自動駕駛算力和數據量
⑴ 零跑汽車發布自動駕駛晶元:算力4.2TOPS 支持L3級自動駕駛
國家發改委產業發展司機械裝備處處長吳衛
未來,中國製造的汽車將是全球新技術融合最多、創新融合最多的,也必將領跑全球汽車工業。
同時,汽車晶元領域的競爭也異常激烈。相比於消費電子產品的晶元,汽車晶元對安全性、穩定性的要求更高,是晶元行業共同面對的難題,這也是中國晶元公司的機會。
結語:自研技術讓零跑更具競爭力
零跑汽車是中國造車新勢力企業中第一個自主研發汽車自動駕駛晶元的,搭載這款晶元的量產車零跑C11下月就將發布。零跑汽車在自動駕駛領域的飛速進步,也得到了用戶的認可。
統計數據顯示,零跑汽車兩款量產車型從今年7月以來銷量逐步攀升,9月銷量破千,10月銷量有望突破1600輛,大量的自研技術讓零跑這一造車新勢力具備了更強的競爭力。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
⑵ 什麼才是制約自動駕駛發展的最大問題
「大爆炸」將至:什麼才是制約自動駕駛發展的最大問題?
自動駕駛時代的V2X場景
除了無線通訊設備外,道路本身的平坦程度、車道線的可識別程度等都是一輛自動駕駛汽車能否安全行駛的關鍵。如果說在城市中心區域的主幹道,這些問題尚且容易解決的話,在次幹道、支路甚至於郊區和鄉村公路,想要達到自動駕駛、甚至於無人駕駛的條件絕非易事。
在這些看得見的成本之外,「看不見的成本」在無形中制約者自動駕駛的發展。從一輛自動駕駛車輛走下生產線到走上城市道路,現行的交通法律顯然遠遠不能滿足需要。
今年7月6日,在網路AI開發者大會的現場直播中,李彥宏乘坐的網路研發自動駕駛車輛在「眾目睽睽」之下違規,實線變道並且未打轉向燈。之後,北京交管部門給網路開了自動駕駛第一張罰單。
對於網路而言,獲得這張罰單還說得過去,畢竟車是自己的,系統是自己研發的,駕駛座上的人也是網路智能汽車事業部總經理顧維灝。但是如果是交付給用戶的車輛,這張罰單應該開給誰呢?是交付車輛的汽車主機廠,還是研發整個自動駕駛系統的開發商,亦或是沒有駕駛行為卻擁有車輛的用戶?
1949年版的《日內瓦道路交通公約》要求駕駛員「應當時刻能夠控制其車輛」,而針對魯莽駕駛的規定則通常要求「有意識地、有目的地操縱車輛」,這一規定在完全自動駕駛時代應當如何適用?
斯坦福大學的法學教授布萊恩特·沃克·史密斯(Bryant Walker Smith)曾撰寫過一份文檔,提出了在自動駕駛情境下如何調整法律的建議,包括把「駕駛員」這一術語改為包括不具備常規意義上的眼睛或者耳朵的計算機等等。修改法律的困難之處在於,法律能夠要求人類規范自己的行為,但現在它無法要求一個人工智慧系統去做什麼事,除非法律的制定者能夠清楚了解這個人工智慧系統能做什麼事不能做什麼事,在紛繁的技術面具下去判定這些責任究竟是屬於誰——可以想見的是,隨著自動駕駛時代到來,現有的交通法規也將會迎來一場大變革。
⑶ 自動駕駛會用到GPU高性能計算嗎
答案是需要使用到GPU高性能計算,自動駕駛的實現,需要依賴感知感測器對道路環境的信息進行採集,包括超聲波、攝像頭、毫米波雷達、激光雷達等,採集的好的數據需要傳送到汽車中央處理器進行處理,用來識別障礙物、可行道路等,最後依據識別的結果,規劃路徑、制定速度,自動驅使汽車行駛。
整個過程需要在瞬時完成,延時必須要控制在毫秒甚至微秒級別,才能保證自動駕駛的行駛安全。
要完成瞬時處理、反饋、決策規劃、執行的效果,對中央處理器的算力要求非常高。
為了准確識別圖像、視頻中的有效信息,業內多採用深度學習神經網路。
深度學習神經網路尤其是幾百上千層的神經網路對高性能計算要求非常高,GPU對處理復雜運算擁有天然的優勢:它有出色的並行矩陣計算能力,對於神經網路的訓練和分類都可以提供顯著的加速效果。選擇桌面雲同樣可以享受GPU高性能計算
因此所有的人工智慧,無論是做語言還是語音、圖象、搜索,都和 GPU 相關。所有傳統行業都會利用深度學習去推動新的改革,讓新的研究方向達到一個新高度和新的飛躍。
⑷ 自動駕駛目前存在哪些缺陷
感測器無法確保100%的准確率,需與高精度地圖融合
對於這次優步自動駕駛車輛致路人死亡事件,高德集團自動駕駛車輛高精度地圖產品專家姚燦認為,發展自動駕駛技術尚需在研發、測試環節投入大量的時間、精力,汽車行業也應始終保有一顆對生命的敬畏之心。
姚燦介紹,從安全形度而言,通過一張輔助的高精度地圖提前對道路場景進行預設,有助於避免交通事故。普通導航地圖主要供人進行參考,而高精度地圖是給機器看的,更像是一個感測器,它收集了大量道路信息,准確的道路形狀,車道之間的車道線,道路隔離帶和材質,甚至道路上的箭頭、文字內容等都有相應描述。
「例如,在距離一個路口300米時,車輛就可以通過高精度地圖提前知曉前方路口的性質、形狀、有幾條車道,是否經常有行人通過,在知道上述信息後,自動駕駛車輛的決策系統就在靠近路口的時候要求車輛提前減速。」
⑸ 英偉達發布史上最強計算平台,黃教主:自動駕駛不再擔心算力問題
原本應該在今年 3 月份於加州聖何塞舉辦的英偉達 GTC 2020 大會,因為全球性新冠病毒肺炎的爆發而不得不推遲舉行。
比原計劃晚了將近 2 個月,英偉達 GTC 2020 終於在 5 月 14 日回歸。
不過這一次開發者們沒辦法在線下集會,只能通過線上直播觀看「皮衣教主」黃仁勛的主題演講。老黃此次是在他矽谷的家中完成了這場別開生面的「Kitchen Keynote」。
雖然是廚房舉行,英偉達依然爆出「核彈」,發布了全新一代的 GPU 架構 Ampere(安培)。
在自動駕駛方向上,英偉達通過兩塊 Orin SoC 和兩塊基於安培架構的 GPU 組合,實現了前所未有的?2000 TOPS?算力的 Robotaxi 計算平台,整體功耗為?800W。
有業界觀點認為,實現 L2 自動駕駛需要的計算力小於 10 TOPS,L3 需要的計算力為 30 - 60 TOPS,L4 需要的計算力大於 100 TOPS,L5 需要的計算力至少為 1000 TOPS。
現在的英偉達自動駕駛計算平台已經建立起了從?10TOPS/5W,200TOPS/45W?到?2000 TOPS/800W?的完整產品線,分別對應前視模塊、L2+ADAS?以及?Robotaxi?的各級應用。
從產品線看,英偉達?Drive AGX?將全面對標 Mobileye?EyeQ?系列,希望成為量產供應鏈中的關鍵廠商。
1、全新 GPU 架構:Ampere(安培)
2 個月的等待是值得的,本次 GTC 上,黃仁勛重磅發布了英偉達全新一代 GPU 架構 Ampere(安培)以及基於這一架構的首款 GPU NVIDIA A100。
A100 在整體性能上相比於前代基於 Volta 架構的產品有 20 倍的提升,這顆 GPU 將主要用於數據分析、專業計算以及圖形處理。
在安培架構之前,英偉達已經研發了多代 GPU 架構,它們都是以科學發展史上的偉人來命名的。
比如 Tesla(特斯拉)、Fermi(費米)、Kepler(開普勒)、Maxwell(麥克斯維爾)、Pascal(帕斯卡)、Volta(伏特)以及 Turing(圖靈)。
這些核心架構的升級正是推動英偉達各類 GPU 產品整體性能提升的關鍵。
針對基於安培架構的首款 GPU A100,黃仁勛細數了它的五大核心特點:
集成了超過 540 億個晶體管,是全球規模最大的 7nm 處理器;引入第三代張量運算指令 Tensor Core 核心,這一代 Tensor Core 更加靈活、速度更快,同時更易於使用;採用了結構化稀疏加速技術,性能得以大幅提升;支持單一 A100 GPU 被分割為多達 7 塊獨立的 GPU,而且每一塊 GPU 都有自己的資源,為不同規模的工作提供不同的計算力;集成了第三代 NVLink 技術,使 GPU 之間高速連接速度翻倍,多顆 A100 可組成一個巨型 GPU,性能可擴展。
這些優勢累加起來,最終讓 A100 相較於前代基於 Volta 架構的 GPU 在訓練性能上提升了?6 倍,在推理性能上提升了?7 倍。
最重要的是,A100 現在就可以向用戶供貨,採用的是台積電的 7nm 工藝製程生產。
阿里雲、網路雲、騰訊雲這些國內企業正在計劃提供基於 A100 GPU 的服務。
2、Orin+安培架構 GPU:實現 2000TOPS 算力
隨著英偉達全新 GPU 架構安培的推出,英偉達的自動駕駛平台(NVIDIA Drive)也迎來了一次性能的飛躍。
大家知道,英偉達此前已經推出了多代 Drive AGX 自動駕駛平台以及 SoC,包括?Drive AGX Xavier、Drive AGX Pegasus?以及?Drive AGX Orin。
其中,Drive AGX Xavier 平台包含了兩顆 Xavier SoC,算力可以達到 30TOPS,功耗為 30W。
最近上市的小鵬 P7 上就量產搭載了這一計算平台,用於實現一系列 L2 級自動輔助駕駛功能。
Drive AGX Pegasus 平台則包括了兩顆 Xavier SoC 和兩顆基於圖靈架構的 GPU,算力能做到 320TOPS,功耗為 500W。
目前有文遠知行這樣的自動駕駛公司在使用這一計算平台。
在 2019 年 12 月的 GTC 中國大會上,英偉達又發布了最新一代的自動駕駛計算 SoC Orin。
這顆晶元由 170 億個晶體管組成,集成了英偉達新一代 GPU 架構和 Arm Hercules CPU 內核以及全新深度學習和計算機視覺加速器,最高每秒可運行 200 萬億次計算。
相較於上一代 Xavier 的性能,提升了 7 倍。
如今,英偉達進一步將自動駕駛計算平台的算力往前推進,通過將兩顆 Orin SoC 和兩塊基於安培架構的 GPU 集成起來,達到驚人的 2000TOPS 算力。
相較於 Drive AGX Pegasus 的性能又提升了 6 倍多,相應地,其功耗為 800W。
按一顆 Orin SoC 200TOPS 算力來計算,一塊基於安培架構的 GPU 的算力達到了 800TOPS。
正因為高算力,這個平台能夠處理全自動駕駛計程車運行所需的更高解析度感測器輸入和更先進的自動駕駛深度神經網路。
對於高階自動駕駛技術的發展而言,英偉達正在依靠 Orin SoC 和安培 GPU 架構在計算平台方面引領整個行業。
當然,作為一個軟體定義的平台,英偉達 Drive AGX 具備很好的可擴展性。
特別是隨著安培 GPU 架構的推出,該平台已經可以實現從入門級 ADAS 解決方案到 L5 級自動駕駛計程車系統的全方位覆蓋。
比如英偉達的 Orin 處理器系列中,有一款低成本的產品可以提供 10TOPS 的算力,功耗僅為 5W,可用作車輛前視 ADAS 的計算平台。
換句話說,採用英偉達 Drive AGX 平台的開發者在單一平台上僅基於一種架構便能開發出適應不同細分市場的自動駕駛系統,省去了單獨開發多個子系統(ADAS、L2+ 等系統)的高昂成本。
不過,想採用 Orin 處理器的廠商還得等一段時間,因為這款晶元會從 2021 年開始提供樣品,到?2022 年下半年才會投入生產並開始供貨。
3、英偉達自動駕駛「朋友圈」再擴大
本屆 GTC 上,英偉達的自動駕駛「朋友圈」繼續擴大。
中國自動駕駛公司小馬智行(Pony.ai)、美國電動車創業公司?Canoo?和法拉第未來(Faraday Future)加入到英偉達的自動駕駛生態圈,將採用英偉達的 Drive AGX 計算平台以及相應的配套軟體。
小馬智行將會基於 Drive AGX Pegasus 計算平台打造全新一代 Robotaxi 車型。
此前,小馬智行已經拿到了豐田的 4 億美金投資,不知道其全新一代 Robotaxi 會不會基於豐田旗下車型打造。
美國的電動汽車初創公司 Canoo 推出了一款專門用於共享出行服務的電動迷你巴士,計劃在 2021 年下半年投入生產。
為了實現輔助駕駛的系列功能,這款車型會搭載英偉達 Drive AGX Xavier 計算平台。前不久,Canoo 還和現代汽車達成合作,要攜手開發電動汽車平台。
作為全球新造車圈內比較特殊存在的法拉第未來,這一次也加入到了英偉達的自動駕駛生態圈。
FF 首款量產車 FF91 上的自動駕駛系統將基於 Drive AGX Xavier 計算平台打造,全車搭載了多達 36 顆各類感測器。
法拉第未來官方稱 FF91 有望在今年年底開始交付,不知道屆時會不會再一次跳票。
作為 GPU 領域絕對霸主的英偉達,在高算力的數據中心 GPU 以及高性能、可擴展的自動駕駛計算平台的加持下,已經建起了一個完整的集數據收集、模型訓練、模擬測試、遠程式控制制和實車應用的軟體定義的自動駕駛平台,實現了端到端的完整閉環。
同時,其自動駕駛生態圈也在不斷擴大,包括汽車製造商、一級供應商、感測器供應商、Robotaxi 研發公司和軟體初創公司在內的數百家自動駕駛產業鏈上的企業已經在基於英偉達的計算硬體和配套軟體開發、測試和應用自動駕駛車輛。
未來,在整個自動駕駛產業里,以計算晶元為核心優勢,英偉達的觸角將更加深入,有機會成為產業鏈條上不可或缺的供應商。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
⑹ 自動駕駛以後會實現嗎
目前國內普遍採用的是美國汽車工程師協會SAE制訂的無人駕駛等級,分六個階段,分別是:L0沒有自動化,L1駕駛輔助,L2部分自動駕駛,L3有條件自動駕駛,L4高度自動駕駛,L5完全自動駕駛。前三個是人類駕駛,後三個為自動駕駛。
國內大多數車企如吉利、長安則已經實現了L2級別的自動駕駛,部分車企業已經宣稱達到L2.5級別自動駕駛,如小鵬G3。
那麼當前已經量產的汽車到了哪一個水平呢?答案是L3,代表車型是第四代奧迪A8。
國內今年即將上市小鵬P7號稱也能達到L3自動駕駛水平。
就目前的各項技術發展趨勢判斷,最早能夠實現量產的L4自動駕駛車型預計會到2022年左右實現,而L5級別的則會在2025年之後。
⑺ 高通發布全新自動駕駛計算平台 最高算力700TOPS,2023年量產
▲高通公司總裁CristianoAmon新聞發布會上向展示了SnapdragonRide(圖源CNET/James?Martin)
SnapdragonRide通過獨特的SoC、加速器和自動駕駛軟體棧的結合,為汽車製造商提供了一種可擴展的解決方案,可在三個細分領域對自動駕駛汽車提供支持,分別是:
1、L1/L2級主動安全ADAS——面向具備自動緊急制動、交通標志識別和車道保持輔助功能的汽車。
2、L2+級ADAS——面向在高速公路上進行自動駕駛、支持自助泊車,以及可在頻繁停車的城市交通中進行駕駛的汽車。
3、L4/L5級完全自動駕駛——面向在城市交通環境中的自動駕駛、無人計程車和機器人物流。
SnapdragonRide平台基於一系列不同的驍龍汽車SoC和加速器建立,採用可擴展且模塊化的高性能異構多核CPU、高能效的AI及計算機視覺引擎,以及GPU。
其中,ADASSoC系列和加速器系列採用異構計算,與此同時利用高通的新一代人工智慧引擎,ADAS和SoC能夠高效管理車載系統的大量數據。
得益於這些不同的SoC和加速器的組合,SnapdragonRide平台可以根據自動駕駛的不同細分市場的需求進行配備,同時提供良好的散熱效率,包括從面向L1/L2級別應用的30TOPS等級的設備,到面向L4/L5級別駕駛、超過700TOPS的功耗130瓦的設備。
此外,高通全新推出的SnapdragonRide自動駕駛軟體棧是集成在SnapdragonRide平台中的模塊化可擴展解決方案。
據介紹,SnapdragonRide平台的軟體框架可同時託管客戶特定的軟體棧組件和SnapdragonRide自動駕駛軟體棧組件。
SnapdragonRide平台也支持被動或風冷的散熱設計,因而能夠在成本降低的同時進一步優化汽車設計,提升可靠性。
現在,Arm、黑莓QNX、英飛凌、新思科技、Elektrobit、安森美半導體均已加入高通的自動駕駛朋友圈,成為SnapdragonRide自動駕駛平台的軟/硬體供應商。
Arm的功能安全解決方案,新思科技的汽車級DesignWare介面IP、ARC處理器IP和STARMemorySystemTM,黑莓QNX的汽車基礎軟體OS安全版及Hypervisor安全版,英飛凌的AURIXTM微控制器,以及安森美半導體的ADAS系列感測器都會集成到高通的自動駕駛平台上。
Elektrobit還計劃與高通合作,共同開發可規模化生產的新一代AUTOSAR架構,EBcorbos軟體和SnapdragonRide自動駕駛平台都將集成在這個架構上面。
據了解SnapdragonRide將在2020年上半年交付汽車製造商和一級供應商進行前期開發,而根據QualcommTechnologies估計,搭載SnapdragonRide的汽車將於2023年投入生產。
二、深耕汽車業務多年高通賦能超百萬台汽車
在發布SnapdragonRide自動駕駛平台之前,高通已在智能汽車領域深耕多年。
十多年來,高通子公司QualcommTechnologies一直在為通用汽車的網聯汽車應用提供先進的無線通信解決方案,包括通用汽車上安吉星設備所支持的安全應用。
在車載信息處理、信息影音和車內互聯等領域,QualcommTechnologies的訂單總價值目前已超過70億美元(約合人民幣487億元)。
而根據高通在CES2020發布會現場公布的信息,迄今為止已經有超百萬輛汽車使用了高通提供的汽車解決方案。
很顯然,如今高通在汽車領域的布局又向前邁進了一步。
CES2020期間,除發布SnapdragonRide自動駕駛平台外,高通還推出了全新的車對雲服務(Car-to-CloudService),該服務預計在2020年下半年開始提供。
據介紹,由QualcommTechnologies打造的車對雲服務支持SoftSKU晶元規格軟升級能力,不僅可以幫助汽車客戶滿足消費者不斷變化的需求,還可根據新增性能需求或新特性,讓晶元組在外場實現升級、以支持全新功能。
與此同時SoftSKU也支持客戶開發通用硬體,從而節省他們面向不同開發項目的專項投入。利用高通車對雲SoftSKU,汽車製造商不僅能夠為消費者提供各種定製化服務,還可以通過個性化特性打造豐富且具沉浸感的車內體驗。
另外高通的車對雲服務也支持實現全球蜂窩連接功能,既可用於引導初始化服務,也可以在整個汽車生命周期中提供無線通信連接。
QualcommTechnologies產品管理高級副總裁NakulDuggal表示,結合驍龍汽車4G和5G平台、驍龍數字座艙平台,高通的車對雲服務能夠幫助汽車製造商和一級供應商滿足當代車主的新期待,包括靈活、持續地進行技術升級,以及在整個汽車生命周期中不斷探索新功能。
此外,QualcommTechnologies也在CES2020上宣布,表示將繼續深化和通用汽車的合作。作為長期合作夥伴,通用汽車將通過與QualcommTechnologies的持續合作來支持數字座艙、車載信息處理和ADAS(先進駕駛輔助系統)。
結語:巨頭紛紛入局自動駕駛領域風起雲涌
前有華為表示要造激光雷達、毫米波雷達等智能汽車核心感測器,後有Arm牽頭成立自動駕駛汽車計算聯盟,如今移動晶元巨頭高通也發布了全新的自動駕駛平台,在汽車和自動駕駛領域上又邁進一步。
巨頭入局有利於自動駕駛汽車更快更好地落地,然而另一方面隨著更多硬核玩家拓展業務邊界,此次市場上的競爭也必然會變得更加激烈。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
⑻ 大數據和人工智慧的聯系與區別是什麼
了解大數據與人工智慧的區別與聯系,首先我們從認知和理解大數據和人工智慧的概念開始。
1、大數據
大數據是物聯網、Web系統和信息系統發展的綜合結果,其中物聯網的影響最大,所以大數據也可以說是物聯網發展的必然結果。大數據相關的技術緊緊圍繞數據展開,包括數據的採集、整理、傳輸、存儲、安全、分析、呈現和應用等等。目前,大數據的價值主要體現在分析和應用上,比如大數據場景分析等。
2、人工智慧
人工智慧是典型的交叉學科,研究的內容集中在機器學習、自然語言處理、計算機視覺、機器人學、自動推理和知識表示等六大方向,目前機器學習的應用范圍還是比較廣泛的,比如自動駕駛、智慧醫療等領域都有廣泛的應用。人工智慧的核心在於「思考」和「決策」,如何進行合理的思考和合理的行動是目前人工智慧研究的主流方向。
3、大數據與人工智慧
大數據和人工智慧雖然關注點並不相同,但是卻有密切的聯系,一方面人工智慧需要大量的數據作為「思考」和「決策」的基礎,另一方面大數據也需要人工智慧技術進行數據價值化操作,比如機器學習就是數據分析的常用方式。在大數據價值的兩個主要體現當中,數據應用的主要渠道之一就是智能體(人工智慧產品),為智能體提供的數據量越大,智能體運行的效果就會越好,因為智能體通常需要大量的數據進行「訓練」和「驗證」,從而保障運行的可靠性和穩定性。
目前大數據相關技術已經趨於成熟,相關的理論體系已經逐步完善,而人工智慧尚處在行業發展的初期,理論體系依然有巨大的發展空間。從學習的角度來說,如果從大數據開始學習是個不錯的選擇,從大數據過渡到人工智慧也會相對比較容易。總的來說,兩個技術之間並不存在孰優孰劣的問題,發展空間都非常大。
⑼ 比特斯拉FSD強7倍算力的蔚來自動駕駛NAD是什麼
焦點無疑是蔚來的ET7:蔚來首款具備自動駕駛能力的智能電動旗艦轎車。蔚來官方將之定義為
「為自動駕駛而生」的汽車。那麼ET7的自動駕駛能力會有多強呢?首先我們還是了解下ET7的基礎性能:新車最大功率 480kW,最大扭矩 850N·m,風阻系數
0.23Cd,百公里加速 3.9 秒。全系標配空懸掛和 4D 智能車身控制。
有了這么強的算力,ET7 全系標配 NAD 19 項安全與駕駛輔助功能,NAD 的完整功能將採用月租的服務訂閱模式, ADaaS(AD as a
Service),服務費為每月 680 元。雖然看得很激動,但ET7 的交付要到明年第一季度,至於 150kWh 的電池包,要到 2022
年第四季度才能開始交付。所以,在這么長的時間里,如今激烈競爭的新造車品牌中,ET7能否一直保持領先,還要看其他同學的成績了。
⑽ 自動駕駛背後的海量數據,最後都去哪了
以一輛信息採集車為例在路測過程中每1秒就會產生720MB的數據大概需要完成2000個小時的路況採集工作量數據量之大超乎想像除自動駕駛外,5G、衛星遙感、基因測序、宇宙探索、超高清視頻這些都在源源不斷地產生新的海量數據,數據類型越來越多樣化,非結構化數據成為增長主力。我們把存儲設備比喻成車、數據比喻成貨物。
FusionStorage智能分布式存儲,基於AI重定義存儲架構,致力於打造海量多樣性的數據底座,幫助用戶從容應對數據洪流。有了它,後續無論客戶的業務如何增長、容量如何擴充,無論是數百個節點還是數千個節點,都沒有擴容壓力,按需擴展、彈性可變。