減速器的軸向力和徑向力怎麼算
Ⅰ 如何計算帶輪所受的圓周力,徑向力和軸向力
1、皮帶輪的圓周力計算
先用皮帶輪轉速與皮帶輪直徑換算比,速度比=輸出轉速:輸入轉速=負載皮帶輪節圓直徑:電機皮帶輪節圓直徑。圓周力和基準力是一樣的,直徑-2h=節圓直徑,h是基準線上槽深,不同型號的V帶h是不一樣的,Y Z A B C D E,基準線上圓周力分別為h=1.6 2 2.75 3.5 4.8 8.1 9.6。
2、皮帶輪的徑向力計算:
徑向力就是皮帶輪節線位置理論力,一般用PD表示,外圓一般用OD表示。不同的槽型節圓與外圓的換算公式不一樣,一般比較容易測量到皮帶輪的外圓,在根據公式計算出節圓。SPZ:OD=PD+4;SPA:OD=PD+5.5;SPB:OD=PD+7;SPC:OD=PD+9.6。
3、皮帶輪的軸向力
設電機皮帶輪(主動輪)直徑、轉速為d1、n1,從動輪直徑、轉速d2、n2,由機械傳動原理可以得出皮帶輪轉速計算公式:d2/d1=n1/n2=i;即d2=d1*(n1/n2)。皮帶輪A或SPA的帶輪最小外徑尺寸為80mm,SPZ帶,小輪不小於63mm。
(1)減速器的軸向力和徑向力怎麼算擴展閱讀:
不同型號的皮帶輪的槽角在不同直徑范圍下的推薦皮帶輪槽角度數
1、O型皮帶輪在帶輪直徑范圍在50mm~71mm時為34度;在71mm~90mm時為36度, >90mm時為38度;
2、 A型皮帶輪在帶輪直徑范圍在71mm~100mm時為34度,100mm~125mm時為36度;>125mm時為38度; B型皮帶輪在帶輪直徑范圍在 125mm~160mm時為34度;160mm~200mm時為36度,>200mm時為38度;
3、 C型皮帶輪在帶輪直徑范圍在200mm~250mm時為34度,250mm~315mm時為36度,>315mm時為38度;
4、D型皮帶輪在帶輪直徑范圍在 355mm~450mm時為36度,>450mm時為38度;E型 500mm~630mm時為36度,>630mm時為38度。
Ⅱ 徑向力和軸向力
電動機用皮帶輪輸出動力時,電機軸只受徑向力;
台鑽在鑽孔時,鑽桿只受軸向力;
車削時,車床的主軸主要受徑向力,也受軸向力。
Ⅲ 減速機速比計算方法
減速比=輸入轉速÷輸出轉速。連接的輸入轉速和輸出轉速的比值。
電機功率=扭矩÷9550×電機功率輸入轉數÷速比÷使用系數。
0.5X3.14=1.57;
1X60=60m/Min;
60÷1.57=38.2RPM;
速比=1490÷38.2=39≈40。
(3)減速器的軸向力和徑向力怎麼算擴展閱讀
減速機型號選擇及注意事項:適用功率通常為市面上的伺服機種的適用功率,減速機的適用性很高,工作系數都能維持在1.2以上,但在選用上也可以以自己的需要來決定。選用伺服電機的出力軸徑不能大於表格上最大使用軸徑。
若經扭力計算工作,轉速可以滿足平常運轉,但在伺服全額輸出時,有不足現象時,可以在電機側之驅動器,做限流控制,或在機械軸上做扭力保護,這是很必要的。
根據選擇的機型號、負載轉距、傳動比、輸出轉速確定所需的電機規格。
1、減速機用在什麼設備上,以便確定安全系數SF(SF=減速機額定功率處以電機功率),安裝形式(直交軸,平行軸,輸出空心軸鍵,輸出空心軸鎖緊盤等)等。
2、提供電機功率,級數(是4P、6P還是8P電機)。
3、減速機周圍的環境溫度(決定減速機的熱功率的校核)。
4、減速機輸出軸的徑向力和軸向力的校核。需提供軸向力和徑向力。
Ⅳ 直齒圓柱形齒輪的圓周力 徑向力和軸向力各怎麼求
求法如下:
若以Z表示齒輪的齒數,則:分度圓周長=πd=zp,即d=zp/π。令p/π=m,則d=mz式中。稱為模數。因為兩齒輪的齒距p必須相等,所以模數也相等。
為了齒輪設計與加工的方便,模數的數值已標准化。模數越大,輪齒的高度、厚度也越大,承受的載荷也越大,在相同條件下,模數越大,齒輪也越大。
(4)減速器的軸向力和徑向力怎麼算擴展閱讀
圓周力的性質:
1、在任何情況下,矩心的合力都為零(即,矩心為定點,其應具備平衡圓周力的條件)。
2、圓周力可以分解若干分(圓周)力或力偶而不改變對圖形的作用。
3、平移定理不完全適用圓周力。
Ⅳ 軸的徑向力和軸向力
是施加徑向力或軸向力的裝置。
Ⅵ 直齒輪傳動的徑向力和軸向力怎麼算
圓周力Ft=2T1/d1 徑向力Fr=Ft*tana 其中T1為扭矩,d1為分度圓直徑,a為分度圓壓力角
Ⅶ 如何確定軸承的軸向力與徑向力
軸向力是指軸承軸線方向的力或者與軸線平行方向的力。徑向力就是說力的方向是與直徑的線平行。
計算方法,先查機械設計手冊,算出圓錐滾子軸承的派生軸向力s,考慮軸承的正反轉,如果本身有受外力軸向力也要考慮,如果有後者就要考慮是放鬆還是壓緊的狀態算出S,再由S算出當量動載荷P,在由壽命公式算出壽命L。 這只是大概步驟,詳細的步驟還望查閱相關書籍。
Ⅷ 電機尾軸的徑向力和軸向力的計算
安裝過許多,但從沒有計算過,應該根據電機編碼器的實際大小來決定電機通過尾軸輸送給其的力矩,這不是由電機來決定,而是由編碼器的大小需要來決定。
Ⅸ 非標件,安裝在傳動軸上,對軸有哪些力圓周力徑向力軸向力怎麼計算
傳動軸是一個高轉速、少支承的旋轉體,因此它的動平衡是至關重要的。一般傳動軸在出廠前都要進行動平衡試驗,並在平衡機上進行了調整。對前置引擎後輪驅動的車來說是把變速器的轉動傳到主減速器的軸,它可以是好幾節的,節與節之間可以由萬向節連接。
Ⅹ 滾動軸承計算徑向力時,齒輪上的軸向力帶到徑向力計算時如何判斷是➕Fae*d還是➖Fae*d
(五)角接觸球軸承和圓錐滾子軸承的徑向載荷Ft與軸向載荷Fa的計算
角接觸球軸承和圓錐滾子軸承承受徑向載荷時,要產生派生的軸向力,為了保證這類軸承正常工作,通常是成對使用的,如圖13-13 所示,圖中表示了兩種不同的安裝方式。
在按式(13 -8a)計算各軸承的當量動載荷P時,其中的徑向載荷F,是由外界作用到軸上的徑向力F.在各軸承上產生的徑向載荷;但其中的軸向載荷F.並不完全由外界的軸向作用力F產生,而是應該根據整個軸上的軸向載荷(包括因徑向載荷F,產生的派生軸向力F)之間的平衡條件得出。下面來分析這個問題。
根據力的徑向平衡條件,很容易由外界作用到軸上的徑向力F.計算出兩個軸承上的徑向載荷F.. Fa。當F的大小及作用位置確定時,徑向載荷F.. F。也就確定了。由F.、F。派生的軸向力F、F。的大小可按照表13-7中的公式計算。計算所得的F,值,相當於正常的安裝情況,即大致相當於下半圈的滾動體全部受載(軸承實際的工作情況不允許比這樣
2.另一端標為軸承1。取軸和與其相配合的軸承內圈為分離體,如達到軸向平衡時,應滿足
F. +Fa=Fa
如果按表13-7中的公式求得的Fa和F。不滿足上面的關系式時,就會出現下面兩種情況:
當F_ +F。>F。時,則軸有向左竄動的趨勢,相當於軸承1被「壓緊」,軸承2被「放鬆」,但實際上軸必須處於平衡位置(即軸承座必然要通過軸承元件施加一個附加的軸向力來阻止軸的竄動),所以被「壓緊」的軸承1所受的總軸向力F。必須與F. +F。相平衡,即
F=F. +F。