軸校核軸向力怎麼算
① 滾動軸承多個軸向力的怎麼計算
簡單演算法是合力,精確點可以用矢量演算法
② 如何計算帶輪所受的圓周力,徑向力和軸向力
1、皮帶輪的圓周力計算
先用皮帶輪轉速與皮帶輪直徑換算比,速度比=輸出轉速:輸入轉速=負載皮帶輪節圓直徑:電機皮帶輪節圓直徑。圓周力和基準力是一樣的,直徑-2h=節圓直徑,h是基準線上槽深,不同型號的V帶h是不一樣的,Y Z A B C D E,基準線上圓周力分別為h=1.6 2 2.75 3.5 4.8 8.1 9.6。
2、皮帶輪的徑向力計算:
徑向力就是皮帶輪節線位置理論力,一般用PD表示,外圓一般用OD表示。不同的槽型節圓與外圓的換算公式不一樣,一般比較容易測量到皮帶輪的外圓,在根據公式計算出節圓。SPZ:OD=PD+4;SPA:OD=PD+5.5;SPB:OD=PD+7;SPC:OD=PD+9.6。
3、皮帶輪的軸向力
設電機皮帶輪(主動輪)直徑、轉速為d1、n1,從動輪直徑、轉速d2、n2,由機械傳動原理可以得出皮帶輪轉速計算公式:d2/d1=n1/n2=i;即d2=d1*(n1/n2)。皮帶輪A或SPA的帶輪最小外徑尺寸為80mm,SPZ帶,小輪不小於63mm。
(2)軸校核軸向力怎麼算擴展閱讀:
不同型號的皮帶輪的槽角在不同直徑范圍下的推薦皮帶輪槽角度數
1、O型皮帶輪在帶輪直徑范圍在50mm~71mm時為34度;在71mm~90mm時為36度, >90mm時為38度;
2、 A型皮帶輪在帶輪直徑范圍在71mm~100mm時為34度,100mm~125mm時為36度;>125mm時為38度; B型皮帶輪在帶輪直徑范圍在 125mm~160mm時為34度;160mm~200mm時為36度,>200mm時為38度;
3、 C型皮帶輪在帶輪直徑范圍在200mm~250mm時為34度,250mm~315mm時為36度,>315mm時為38度;
4、D型皮帶輪在帶輪直徑范圍在 355mm~450mm時為36度,>450mm時為38度;E型 500mm~630mm時為36度,>630mm時為38度。
③ 調心滾子軸承軸向力怎麼計算呢
查表。專業的軸承廠家,會給你一份專門的軸承選型資料。那裡面就有計算方法和推薦值。
④ 直齒圓柱形齒輪的圓周力 徑向力和軸向力各怎麼求
求法如下:
若以Z表示齒輪的齒數,則:分度圓周長=πd=zp,即d=zp/π。令p/π=m,則d=mz式中。稱為模數。因為兩齒輪的齒距p必須相等,所以模數也相等。
為了齒輪設計與加工的方便,模數的數值已標准化。模數越大,輪齒的高度、厚度也越大,承受的載荷也越大,在相同條件下,模數越大,齒輪也越大。
(4)軸校核軸向力怎麼算擴展閱讀
圓周力的性質:
1、在任何情況下,矩心的合力都為零(即,矩心為定點,其應具備平衡圓周力的條件)。
2、圓周力可以分解若干分(圓周)力或力偶而不改變對圖形的作用。
3、平移定理不完全適用圓周力。
⑤ 電機尾軸的徑向力和軸向力的計算
安裝過許多,但從沒有計算過,應該根據電機編碼器的實際大小來決定電機通過尾軸輸送給其的力矩,這不是由電機來決定,而是由編碼器的大小需要來決定。
⑥ 滾動軸承計算徑向力時,齒輪上的軸向力帶到徑向力計算時如何判斷是➕Fae*d還是➖Fae*d
(五)角接觸球軸承和圓錐滾子軸承的徑向載荷Ft與軸向載荷Fa的計算
角接觸球軸承和圓錐滾子軸承承受徑向載荷時,要產生派生的軸向力,為了保證這類軸承正常工作,通常是成對使用的,如圖13-13 所示,圖中表示了兩種不同的安裝方式。
在按式(13 -8a)計算各軸承的當量動載荷P時,其中的徑向載荷F,是由外界作用到軸上的徑向力F.在各軸承上產生的徑向載荷;但其中的軸向載荷F.並不完全由外界的軸向作用力F產生,而是應該根據整個軸上的軸向載荷(包括因徑向載荷F,產生的派生軸向力F)之間的平衡條件得出。下面來分析這個問題。
根據力的徑向平衡條件,很容易由外界作用到軸上的徑向力F.計算出兩個軸承上的徑向載荷F.. Fa。當F的大小及作用位置確定時,徑向載荷F.. F。也就確定了。由F.、F。派生的軸向力F、F。的大小可按照表13-7中的公式計算。計算所得的F,值,相當於正常的安裝情況,即大致相當於下半圈的滾動體全部受載(軸承實際的工作情況不允許比這樣
2.另一端標為軸承1。取軸和與其相配合的軸承內圈為分離體,如達到軸向平衡時,應滿足
F. +Fa=Fa
如果按表13-7中的公式求得的Fa和F。不滿足上面的關系式時,就會出現下面兩種情況:
當F_ +F。>F。時,則軸有向左竄動的趨勢,相當於軸承1被「壓緊」,軸承2被「放鬆」,但實際上軸必須處於平衡位置(即軸承座必然要通過軸承元件施加一個附加的軸向力來阻止軸的竄動),所以被「壓緊」的軸承1所受的總軸向力F。必須與F. +F。相平衡,即
F=F. +F。
⑦ 柱軸向壓力設計值怎麼算
柱組合的軸壓力設計值:
N=βFgn
註:β考慮地震作用組合後柱軸壓力增大系數(邊柱取1.3。中柱取1.25)。
F按簡支狀態計算柱的負載面積。
g 折算在單位建築面積上的重力荷載代表值,可近似的取14KN/m2。
n為驗算截面以上的樓層層數。
(7)軸校核軸向力怎麼算擴展閱讀:
設計壓力
當容器上裝有安全閥時
考慮到安全閥開啟動作的滯後,容器不能及時泄壓,設計壓力不得低於安全閥的開啟壓力[開啟壓力是指閥瓣在運行條件下開始升起,介質連續排出的瞬時壓力,其值小於等於(1.05~1.1)倍容器的工作壓力]。
當容器上裝有爆破片時
設計壓力不得低於爆破片的爆破壓力。其值可以根據爆破片的類型確定,取爆破片的設計爆破壓力加上所選爆破片製造范圍的上限,通常可取(1.15~1.3)倍最高工作壓力。
當容器出口側管線上裝有安全閥時其設計壓力應不低於安全閥的開啟壓力加上容器至安全閥處的壓力降。當容器進口管線上裝有安全閥出口側裝有截止閥或其它截斷裝置時,其設計壓力取以下兩種情況之大者。
a、安全閥的開啟壓力。
b、按容器工作壓力增加適當的裕度。
當容器位於泵進口側且無安全控制裝置時取無安全泄放裝置時的設計壓力,且以0.1MPa外壓進行校核。
其設計壓力取以下三者中的大值。
a、泵正常入口壓力加1.2倍的泵正常工作揚程。
b、泵最大入口壓力加泵正常工作揚程。
c、泵正常入口壓力加關閉揚程(即泵出口全關閉揚程)。
當容器系統中有控制裝置而單個容器沒有時且各容器之間的壓力降難以確定時,其設計壓力可按下表確定。
⑧ 軸向力如何計算已知軸直徑50mm,功率90kw,轉速3000
軸向力的作用方向就是順著軸的中心線方向,方向確定了,如果沒有外力,軸向力(不就是重力嗎?)就出來了。
⑨ 軸上的載荷怎麼計算
你學過材料力學的話就該知道怎麼計算,有相應的公式,機械設計手冊上也可查到相應的計算簡圖和公式。沒有相應的表可查。若沒學過材料力學的話,物理科的學習尖子通過高中物理的力學知識也許能計算,但學習一般的學生則有困難。若軸上受有圓周力的話,還要計算扭矩。
⑩ 軸向力與水平力的計算
一、軸向力的計算
切削具切入岩石的必要條件是Py≥S0·σ。式中:Py是一個切削具上的軸向壓力;S0為切削具與岩石的接觸面積;σ為岩石的臨界抗壓入強度。
圖1-3-8 切削具切入岩石時的力系平衡圖
在Py力的作用下,切削具開始切入岩石,由於岩石對切削刃有阻力,切削具不可能沿垂直方向,而是沿著與垂直方向夾角為γ的方向向下移動;γ角的大小取決於岩石對金屬之摩擦系數與切削具之刃尖角β。因此,在前面OB上,在切入過程中,產生正壓力N2及摩擦阻力N2tanφ(tanφ等於摩擦系數f)。同理,在後斜面上產生正壓力N1及摩擦阻力N1tanφ,見圖1-3-8。
各作用力的平衡關系如下:
碎岩工程學
化簡後得:
碎岩工程學
∑Fy=0
碎岩工程學
化簡後得:
碎岩工程學
將式(1-3-2)代入式(1-3-3),整理後則得:
碎岩工程學
又根據切削具切入岩石的條件:
碎岩工程學
式中:b為切削具寬度;σn為面上的法線壓強(或應力);σ為垂直於 AB面上的壓強,等於岩石的抗壓入強度。
將式(1-3-5)代入式(1-3-4)中,則得軸向力的計算公式:
碎岩工程學
對式(1-3-6)進行數學整理後,切入深度h0應為:
碎岩工程學
設式(1-3-7)等號右側方括弧內的cos2φ/sin(β+2φ)=Z,則有:
碎岩工程學
式中Z為由切削具刃尖角β和切削具與岩石的摩擦角φ所決定的一個系數,在一般情況下Z=0.88~0.97。
式(1-3-8)對於塑性岩石來說,基本得到證實。即切入深度基本上與軸向壓力Py成正比,而與切削具寬度b、刃尖角β以及岩石的抗壓入強度成反比。對於脆性岩石來說,破碎深度要大於切入深度。
二、水平力的計算
水平力使岩石產生大剪切時,切削具必須近似地克服圖1-3-9中面積為cc′b′b、側面積分別為abc和a′b′c′的岩體抗剪切阻力和切削具與槽底之間的摩擦力。
圖1-3-9 切削具大剪切時所受的阻力
由圓知:cc′b′b之面積等於,abc和 a′b′c′之側面積等於。
剪切aa′bb′cc′時,所產生的抗剪阻力等於:
碎岩工程學
式中:σ0為岩石抗剪切強度。
剪切aa′bb′cc′岩體時,所需克服的總阻力等於:
碎岩工程學
式中f1為岩石內摩擦系數。
剪切aa′bb′cc′的有效外載等於:
碎岩工程學
若使式(1-3-9)與式(1-3-10)相等,可得出Px與Py的關系式:
碎岩工程學
由公式(1-3-11)可知,Px力與b、h、σ0、Py、f成正比,而與cosβ成反比。