當前位置:首頁 » 算力簡介 » redis去中心化架構

redis去中心化架構

發布時間: 2022-04-06 00:02:19

1. 微博的系統架構,想用mysql+redis配合使用,想問一下具體要怎麼操作

微博的系統架構,想用mysql+redis配合使用,具體操作步驟:
寫入數據到Redis,,然後在寫個運行cron的腳本,美妙讀內存,並寫入資料庫即可。
使用注意:
1、MySQL使用需要注意的地方:
1) 、存儲引擎選擇InnoDB,在高並發下讀寫有很好的表現;
2)、 數據合理分表分區,均衡各資料庫伺服器的負載;
3) 、適當作數據的冗餘,便於在cache失效時的快速恢復;
2、Redis使用需要注意的地方:
1) 、合理規劃cache;
將訪問量高的熱點數據統計出來、分類緩存。
2)、 緩存的壓縮;
在高訪問量和高並發下,每一個位元組的減少都是巨大的節省。
3、數據實時性與一致性。

2. Redis適合存儲海量小文件嗎

最近學習下redis,作為一個高性能的k/v資料庫,如果數據不用swap的話,redis的性能是無以倫比的。最近在做一個系統附件的緩存,試著把附件放到redis試試,寫了個保存文件的方法。public class TestRedis{ Jedis redis = new Jedis("localhost");...

3. 如何部署高可用的Redis集群架構

1、准備redis鏡像Redis官方已經提供了Redis 3.2和3.3的鏡像,都可以用來作為Redis集群的鏡像,3.2是穩定版本。目前官方推出了alpine版本的Redis鏡像,alpine鏡像的優勢是體積小。此次分享是採用官方的redis:3.2-alpine的鏡像來做集群。2、准備初始化腳本的執行環境redis官方提供了一個ruby的腳本redis-trib.rb,這個腳本可以用來初始化集群、resharding集群、rebalance集群等。

4. Redis和Memcache的區別總結

區別:

1、存儲方式不同

memecache 把數據全部存在內存之中,斷電後會掛掉,數據不能超過內存大小;redis有部份存在硬碟上,這樣能保證數據的持久性,支持數據的持久化(筆者註:有快照和AOF日誌兩種持久化方式,在實際應用的時候,要特別注意配置文件快照參數,要不就很有可能伺服器頻繁滿載做mp)。

2、數據支持類型不同

redis在數據支持上要比memecache多的多。

3、使用底層模型不同

新版本的redis直接自己構建了VM 機制 ,因為一般的系統調用系統函數的話,會浪費一定的時間去移動和請求。

4、運行環境不同

redis目前官方只支持LINUX 上去行,從而省去了對於其它系統的支持,這樣的話可以更好的把精力用於本系統 環境上的優化,雖然後來微軟有一個小組為其寫了補丁。但是沒有放到主幹上。

(4)redis去中心化架構擴展閱讀

注意事項

1、 Redis和Memcache都是將數據存放在內存中,都是內存資料庫。不過memcache還可用於緩存其他東西,例如圖片、視頻等等。

2、Redis不僅僅支持簡單的k/v類型的數據,同時還提供list,set,hash等數據結構的存儲。

3、虛擬內存–Redis當物理內存用完時,可以將一些很久沒用到的value 交換到磁碟 。

4、過期策略–memcache在set時就指定,例如set key1 0 0 8,即永不過期。Redis可以通過例如expire 設定,例如expire name 10 。

5、分布式–設定memcache集群,利用magent做一主多從;redis可以做一主多從。都可以一主一,存儲數據安全–memcache掛掉後,數據沒了;redis可以定期保存到磁碟(持久化) 。

5. 如何利用Redis擴展數據服務,實現分片及高可用

應用Redis實現數據的讀寫,同時利用隊列處理器定時將數據寫入mysql。同時要注意避免沖突,在redis啟動時去mysql讀取所有表鍵值存入redis中,往redis寫數據時,對redis主鍵自增並進行讀取,若mysql更新失敗,則需要及時清除緩存及同步redis主鍵。這樣處理,主要是實時讀寫redis,而mysql數據則通過隊列非同步處理,緩解mysql壓力,不過這種方法應用場景主要基於高並發,而且redis的高可用集群架構相對更復雜,一般不是很推薦。

6. redis2 和 redis3 的區別

前者是一個完全無中心的設計,節點之間通過gossip方式傳遞集群信息,數據保證最終一致性
後者是一個中心化的方案設計,通過類似一個分布式鎖服務來保證強一致性,數據寫入先寫內存和redo log,然後定期compat歸並到磁碟上,將隨機寫優化為順序寫,提高寫入性能。

7. Redis應用場景

Redis實際應用場景
1、顯示最新的項目列表
下面這個語句常用來顯示最新項目,隨著數據多了,查詢毫無疑問會越來越慢。
SELECT FROM fOO WHERE ORDER BY time DESC LIMIT 10
在Web應用中,「列出最新的回復」之類的查詢非常普遍,這通常會帶來可擴展性問題。這令人沮喪,因為項目本來就是按這個順序被創建的,但要輸出這個順序卻不得不進行排序操作。類似的問題就可以用Redis來解決。比如說,我們的一個Web應用想要列出用戶貼出的最新20條評論。在最新的評論邊上我們有一個「顯示全部」的鏈接,點擊後就可以獲得更多的評論。我們假設資料庫中的每條評論都有一個唯一的遞增的ID欄位。我們可以使用分頁來製作主頁和評論頁,使用Redis的模板,每次新評論發表時,我們會將它的ID添加到一個Redis列表:
LPUSH latest.comments <ID>
我們將列表裁剪為指定長度,因此Redis只需要保存最新的5000條評論:
LTRIM latest.comments 0 5000
每次我們需要獲取最新評論的項目范圍時,我們調用一個函數來完成(使用偽代碼):
FUNCTION get_latest_comments(start,num_items):
id list =redis.lrange("latest.comments",start,start+num items -1) IF id list.length<num items
id list = SQL DB("SELECT ... ORDER BY time LIMIT ...") END
RETURN id list END
這里我們做的很簡單。在Redis中我們的最新ID使用了常駐緩存,這是一直更新的。但是我們做了限制不能超過5000個ID,因此我們的獲取ID函數會一直詢問Redis。只有在start/count參數超出了這個范圍的時候,才需要去訪問資料庫。
我們的系統不會像傳統方式那樣「刷新」緩存,Redis實例中的信息永遠是一致的。SQL資料庫(或是硬碟上的其他類型資料庫)只是在用戶需要獲取「很遠」的數據時才會被觸發,而主頁或第一個評論頁是不會麻煩到硬碟上的資料庫了。

8. redis和memcached的區別

Redis的作者Salvatore Sanfilippo曾經對這兩種基於內存的數據存儲系統進行過比較:

1、Redis支持伺服器端的數據操作:Redis相比Memcached來說,擁有更多的數據結構和並支持更豐富的數據操作,通常在Memcached里,你需要將數據拿到客戶端來進行類似的修改再set回去。這大大增加了網路IO的次數和數據體積。在Redis中,這些復雜的操作通常和一般的GET/SET一樣高效。所以,如果需要緩存能夠支持更復雜的結構和操作,那麼Redis會是不錯的選擇。

2、內存使用效率對比:使用簡單的key-value存儲的話,Memcached的內存利用率更高,而如果Redis採用hash結構來做key-value存儲,由於其組合式的壓縮,其內存利用率會高於Memcached。

3、性能對比:由於Redis只使用單核,而Memcached可以使用多核,所以平均每一個核上Redis在存儲小數據時比Memcached性能更高。而在100k以上的數據中,Memcached性能要高於Redis,雖然Redis最近也在存儲大數據的性能上進行優化,但是比起Memcached,還是稍有遜色。


具體為什麼會出現上面的結論,以下為收集到的資料:

1、數據類型支持不同

與Memcached僅支持簡單的key-value結構的數據記錄不同,Redis支持的數據類型要豐富得多。最為常用的數據類型主要由五種:String、Hash、List、Set和Sorted Set。Redis內部使用一個redisObject對象來表示所有的key和value。redisObject最主要的信息如圖所示:

type代表一個value對象具體是何種數據類型,encoding是不同數據類型在redis內部的存儲方式,比如:type=string代表value存儲的是一個普通字元串,那麼對應的encoding可以是raw或者是int,如果是int則代表實際redis內部是按數值型類存儲和表示這個字元串的,當然前提是這個字元串本身可以用數值表示,比如:」123″ 「456」這樣的字元串。只有打開了Redis的虛擬內存功能,vm欄位欄位才會真正的分配內存,該功能默認是關閉狀態的。

1)String

  • 常用命令:set/get/decr/incr/mget等;

  • 應用場景:String是最常用的一種數據類型,普通的key/value存儲都可以歸為此類;

  • 實現方式:String在redis內部存儲默認就是一個字元串,被redisObject所引用,當遇到incr、decr等操作時會轉成數值型進行計算,此時redisObject的encoding欄位為int。

  • 2)Hash

  • 常用命令:hget/hset/hgetall等

  • 應用場景:我們要存儲一個用戶信息對象數據,其中包括用戶ID、用戶姓名、年齡和生日,通過用戶ID我們希望獲取該用戶的姓名或者年齡或者生日;

  • 實現方式:Redis的Hash實際是內部存儲的Value為一個HashMap,並提供了直接存取這個Map成員的介面。如圖所示,Key是用戶ID, value是一個Map。這個Map的key是成員的屬性名,value是屬性值。這樣對數據的修改和存取都可以直接通過其內部Map的Key(Redis里稱內部Map的key為field), 也就是通過 key(用戶ID) + field(屬性標簽) 就可以操作對應屬性數據。當前HashMap的實現有兩種方式:當HashMap的成員比較少時Redis為了節省內存會採用類似一維數組的方式來緊湊存儲,而不會採用真正的HashMap結構,這時對應的value的redisObject的encoding為zipmap,當成員數量增大時會自動轉成真正的HashMap,此時encoding為ht。

  • 3)List

  • 常用命令:lpush/rpush/lpop/rpop/lrange等;

  • 應用場景:Redis list的應用場景非常多,也是Redis最重要的數據結構之一,比如twitter的關注列表,粉絲列表等都可以用Redis的list結構來實現;

  • 實現方式:Redis list的實現為一個雙向鏈表,即可以支持反向查找和遍歷,更方便操作,不過帶來了部分額外的內存開銷,Redis內部的很多實現,包括發送緩沖隊列等也都是用的這個數據結構。

  • 4)Set

  • 常用命令:sadd/spop/smembers/sunion等;

  • 應用場景:Redis set對外提供的功能與list類似是一個列表的功能,特殊之處在於set是可以自動排重的,當你需要存儲一個列表數據,又不希望出現重復數據時,set是一個很好的選擇,並且set提供了判斷某個成員是否在一個set集合內的重要介面,這個也是list所不能提供的;

  • 實現方式:set 的內部實現是一個 value永遠為null的HashMap,實際就是通過計算hash的方式來快速排重的,這也是set能提供判斷一個成員是否在集合內的原因。

  • 5)Sorted Set

  • 常用命令:zadd/zrange/zrem/zcard等;

  • 應用場景:Redis sorted set的使用場景與set類似,區別是set不是自動有序的,而sorted set可以通過用戶額外提供一個優先順序(score)的參數來為成員排序,並且是插入有序的,即自動排序。當你需要一個有序的並且不重復的集合列表,那麼可以選擇sorted set數據結構,比如twitter 的public timeline可以以發表時間作為score來存儲,這樣獲取時就是自動按時間排好序的。

  • 實現方式:Redis sorted set的內部使用HashMap和跳躍表(SkipList)來保證數據的存儲和有序,HashMap里放的是成員到score的映射,而跳躍表裡存放的是所有的成員,排序依據是HashMap里存的score,使用跳躍表的結構可以獲得比較高的查找效率,並且在實現上比較簡單。

  • 2、內存管理機制不同

    在Redis中,並不是所有的數據都一直存儲在內存中的。這是和Memcached相比一個最大的區別。當物理內存用完時,Redis可以將一些很久沒用到的value交換到磁碟。Redis只會緩存所有的key的信息,如果Redis發現內存的使用量超過了某一個閥值,將觸發swap的操作,Redis根據「swappability = age*log(size_in_memory)」計算出哪些key對應的value需要swap到磁碟。然後再將這些key對應的value持久化到磁碟中,同時在內存中清除。這種特性使得Redis可以保持超過其機器本身內存大小的數據。當然,機器本身的內存必須要能夠保持所有的key,畢竟這些數據是不會進行swap操作的。同時由於Redis將內存中的數據swap到磁碟中的時候,提供服務的主線程和進行swap操作的子線程會共享這部分內存,所以如果更新需要swap的數據,Redis將阻塞這個操作,直到子線程完成swap操作後才可以進行修改。當從Redis中讀取數據的時候,如果讀取的key對應的value不在內存中,那麼Redis就需要從swap文件中載入相應數據,然後再返回給請求方。 這里就存在一個I/O線程池的問題。在默認的情況下,Redis會出現阻塞,即完成所有的swap文件載入後才會相應。這種策略在客戶端的數量較小,進行批量操作的時候比較合適。但是如果將Redis應用在一個大型的網站應用程序中,這顯然是無法滿足大並發的情況的。所以Redis運行我們設置I/O線程池的大小,對需要從swap文件中載入相應數據的讀取請求進行並發操作,減少阻塞的時間。

    對於像Redis和Memcached這種基於內存的資料庫系統來說,內存管理的效率高低是影響系統性能的關鍵因素。傳統C語言中的malloc/free函數是最常用的分配和釋放內存的方法,但是這種方法存在著很大的缺陷:首先,對於開發人員來說不匹配的malloc和free容易造成內存泄露;其次頻繁調用會造成大量內存碎片無法回收重新利用,降低內存利用率;最後作為系統調用,其系統開銷遠遠大於一般函數調用。所以,為了提高內存的管理效率,高效的內存管理方案都不會直接使用malloc/free調用。Redis和Memcached均使用了自身設計的內存管理機制,但是實現方法存在很大的差異,下面將會對兩者的內存管理機制分別進行介紹。

    Memcached默認使用Slab Allocation機制管理內存,其主要思想是按照預先規定的大小,將分配的內存分割成特定長度的塊以存儲相應長度的key-value數據記錄,以完全解決內存碎片問題。Slab Allocation機制只為存儲外部數據而設計,也就是說所有的key-value數據都存儲在Slab Allocation系統里,而Memcached的其它內存請求則通過普通的malloc/free來申請,因為這些請求的數量和頻率決定了它們不會對整個系統的性能造成影響Slab Allocation的原理相當簡單。 如圖所示,它首先從操作系統申請一大塊內存,並將其分割成各種尺寸的塊Chunk,並把尺寸相同的塊分成組Slab Class。其中,Chunk就是用來存儲key-value數據的最小單位。每個Slab Class的大小,可以在Memcached啟動的時候通過制定Growth Factor來控制。假定圖中Growth Factor的取值為1.25,如果第一組Chunk的大小為88個位元組,第二組Chunk的大小就為112個位元組,依此類推。

    當Memcached接收到客戶端發送過來的數據時首先會根據收到數據的大小選擇一個最合適的Slab Class,然後通過查詢Memcached保存著的該Slab Class內空閑Chunk的列表就可以找到一個可用於存儲數據的Chunk。當一條資料庫過期或者丟棄時,該記錄所佔用的Chunk就可以回收,重新添加到空閑列表中。從以上過程我們可以看出Memcached的內存管理制效率高,而且不會造成內存碎片,但是它最大的缺點就是會導致空間浪費。因為每個Chunk都分配了特定長度的內存空間,所以變長數據無法充分利用這些空間。如圖 所示,將100個位元組的數據緩存到128個位元組的Chunk中,剩餘的28個位元組就浪費掉了。

    Redis的內存管理主要通過源碼中zmalloc.h和zmalloc.c兩個文件來實現的。Redis為了方便內存的管理,在分配一塊內存之後,會將這塊內存的大小存入內存塊的頭部。如圖所示,real_ptr是redis調用malloc後返回的指針。redis將內存塊的大小size存入頭部,size所佔據的內存大小是已知的,為size_t類型的長度,然後返回ret_ptr。當需要釋放內存的時候,ret_ptr被傳給內存管理程序。通過ret_ptr,程序可以很容易的算出real_ptr的值,然後將real_ptr傳給free釋放內存。

    Redis通過定義一個數組來記錄所有的內存分配情況,這個數組的長度為ZMALLOC_MAX_ALLOC_STAT。數組的每一個元素代表當前程序所分配的內存塊的個數,且內存塊的大小為該元素的下標。在源碼中,這個數組為zmalloc_allocations。zmalloc_allocations[16]代表已經分配的長度為16bytes的內存塊的個數。zmalloc.c中有一個靜態變數used_memory用來記錄當前分配的內存總大小。所以,總的來看,Redis採用的是包裝的mallc/free,相較於Memcached的內存管理方法來說,要簡單很多。

    3、數據持久化支持

    Redis雖然是基於內存的存儲系統,但是它本身是支持內存數據的持久化的,而且提供兩種主要的持久化策略:RDB快照和AOF日誌。而memcached是不支持數據持久化操作的。

    1)RDB快照

    Redis支持將當前數據的快照存成一個數據文件的持久化機制,即RDB快照。但是一個持續寫入的資料庫如何生成快照呢?Redis藉助了fork命令的 on write機制。在生成快照時,將當前進程fork出一個子進程,然後在子進程中循環所有的數據,將數據寫成為RDB文件。我們可以通過Redis的save指令來配置RDB快照生成的時機,比如配置10分鍾就生成快照,也可以配置有1000次寫入就生成快照,也可以多個規則一起實施。這些規則的定義就在Redis的配置文件中,你也可以通過Redis的CONFIG SET命令在Redis運行時設置規則,不需要重啟Redis。

    Redis的RDB文件不會壞掉,因為其寫操作是在一個新進程中進行的,當生成一個新的RDB文件時,Redis生成的子進程會先將數據寫到一個臨時文件中,然後通過原子性rename系統調用將臨時文件重命名為RDB文件,這樣在任何時候出現故障,Redis的RDB文件都總是可用的。同時,Redis的RDB文件也是Redis主從同步內部實現中的一環。RDB有他的不足,就是一旦資料庫出現問題,那麼我們的RDB文件中保存的數據並不是全新的,從上次RDB文件生成到Redis停機這段時間的數據全部丟掉了。在某些業務下,這是可以忍受的。

    2)AOF日誌

    AOF日誌的全稱是append only file,它是一個追加寫入的日誌文件。與一般資料庫的binlog不同的是,AOF文件是可識別的純文本,它的內容就是一個個的Redis標准命令。只有那些會導致數據發生修改的命令才會追加到AOF文件。每一條修改數據的命令都生成一條日誌,AOF文件會越來越大,所以Redis又提供了一個功能,叫做AOF rewrite。其功能就是重新生成一份AOF文件,新的AOF文件中一條記錄的操作只會有一次,而不像一份老文件那樣,可能記錄了對同一個值的多次操作。其生成過程和RDB類似,也是fork一個進程,直接遍歷數據,寫入新的AOF臨時文件。在寫入新文件的過程中,所有的寫操作日誌還是會寫到原來老的AOF文件中,同時還會記錄在內存緩沖區中。當重完操作完成後,會將所有緩沖區中的日誌一次性寫入到臨時文件中。然後調用原子性的rename命令用新的AOF文件取代老的AOF文件。

    AOF是一個寫文件操作,其目的是將操作日誌寫到磁碟上,所以它也同樣會遇到我們上面說的寫操作的流程。在Redis中對AOF調用write寫入後,通過appendfsync選項來控制調用fsync將其寫到磁碟上的時間,下面appendfsync的三個設置項,安全強度逐漸變強。

  • appendfsync no 當設置appendfsync為no的時候,Redis不會主動調用fsync去將AOF日誌內容同步到磁碟,所以這一切就完全依賴於操作系統的調試了。對大多數Linux操作系統,是每30秒進行一次fsync,將緩沖區中的數據寫到磁碟上。

  • appendfsync everysec 當設置appendfsync為everysec的時候,Redis會默認每隔一秒進行一次fsync調用,將緩沖區中的數據寫到磁碟。但是當這一次的fsync調用時長超過1秒時。Redis會採取延遲fsync的策略,再等一秒鍾。也就是在兩秒後再進行fsync,這一次的fsync就不管會執行多長時間都會進行。這時候由於在fsync時文件描述符會被阻塞,所以當前的寫操作就會阻塞。所以結論就是,在絕大多數情況下,Redis會每隔一秒進行一次fsync。在最壞的情況下,兩秒鍾會進行一次fsync操作。這一操作在大多數資料庫系統中被稱為group commit,就是組合多次寫操作的數據,一次性將日誌寫到磁碟。

  • appednfsync always 當設置appendfsync為always時,每一次寫操作都會調用一次fsync,這時數據是最安全的,當然,由於每次都會執行fsync,所以其性能也會受到影響。

  • 對於一般性的業務需求,建議使用RDB的方式進行持久化,原因是RDB的開銷並相比AOF日誌要低很多,對於那些無法忍數據丟失的應用,建議使用AOF日誌。

    4、集群管理的不同

    Memcached是全內存的數據緩沖系統,Redis雖然支持數據的持久化,但是全內存畢竟才是其高性能的本質。作為基於內存的存儲系統來說,機器物理內存的大小就是系統能夠容納的最大數據量。如果需要處理的數據量超過了單台機器的物理內存大小,就需要構建分布式集群來擴展存儲能力。

    Memcached本身並不支持分布式,因此只能在客戶端通過像一致性哈希這樣的分布式演算法來實現Memcached的分布式存儲。下圖給出了Memcached的分布式存儲實現架構。當客戶端向Memcached集群發送數據之前,首先會通過內置的分布式演算法計算出該條數據的目標節點,然後數據會直接發送到該節點上存儲。但客戶端查詢數據時,同樣要計算出查詢數據所在的節點,然後直接向該節點發送查詢請求以獲取數據。

    相較於Memcached只能採用客戶端實現分布式存儲,Redis更偏向於在伺服器端構建分布式存儲。最新版本的Redis已經支持了分布式存儲功能。Redis Cluster是一個實現了分布式且允許單點故障的Redis高級版本,它沒有中心節點,具有線性可伸縮的功能。下圖給出Redis Cluster的分布式存儲架構,其中節點與節點之間通過二進制協議進行通信,節點與客戶端之間通過ascii協議進行通信。在數據的放置策略上,Redis Cluster將整個key的數值域分成4096個哈希槽,每個節點上可以存儲一個或多個哈希槽,也就是說當前Redis Cluster支持的最大節點數就是4096。Redis Cluster使用的分布式演算法也很簡單:crc16( key ) % HASH_SLOTS_NUMBER。

    為了保證單點故障下的數據可用性,Redis Cluster引入了Master節點和Slave節點。在Redis Cluster中,每個Master節點都會有對應的兩個用於冗餘的Slave節點。這樣在整個集群中,任意兩個節點的宕機都不會導致數據的不可用。當Master節點退出後,集群會自動選擇一個Slave節點成為新的Master節點。

9. 怎樣去redis-cluster獲取緩存路由表

1、redis的cluster模式下,需要客戶端自己去手動獲取緩存路由表,redis不會向客戶端主動發送或者更新;
2、客戶端的獲取或者說更新路由表,就是通過客戶端與每個node(包括master和slave)建立TCP連接以及後續的命令來實現的:先查看能否建立連接,如果成功建立鏈接,再發送command來確定其他信息;

10. 面試問題redis有哪些集群方案

P2P模式,無中心化
把key分成16384個slot
每個實例負責一部分slot
客戶端請求若不在連接的實例,該實例會轉發給對應的實例。
通過Gossip協議同步節點信息

優點:
- 組件all-in-box,部署簡單,節約機器資源
- 性能比proxy模式好
- 自動故障轉移、Slot遷移中數據可用
- 官方原生集群方案,更新與支持有保障

缺點:
- 架構比較新,最佳實踐較少
- 多鍵操作支持有限(驅動可以曲線救國)
- 為了性能提升,客戶端需要緩存路由表信息
- 節點發現、reshard操作不夠自動化

熱點內容
菲爾幣礦機是什麼 發布:2025-07-26 20:13:58 瀏覽:645
比特幣在中國最高價格多少錢 發布:2025-07-26 20:12:07 瀏覽:172
以太坊企業聯盟官網 發布:2025-07-26 20:05:22 瀏覽:516
區塊鏈的賺錢養殖軟體 發布:2025-07-26 19:58:41 瀏覽:610
以太坊實現空間存儲 發布:2025-07-26 19:35:26 瀏覽:103
紅usdt怎麼換藍usdt 發布:2025-07-26 19:28:05 瀏覽:130
中國ltc什麼意思 發布:2025-07-26 19:18:59 瀏覽:807
圖蟲區塊鏈證書如何獲取 發布:2025-07-26 19:14:00 瀏覽:734
現在比特幣挖礦需要什麼配置 發布:2025-07-26 19:11:27 瀏覽:711
華擎h110btc只識別4塊顯卡 發布:2025-07-26 18:53:22 瀏覽:961