後繼屈服力怎麼算
『壹』 屈服強度怎麼計算
鋼材拉伸至斷裂要經過四個階段:1比例階段、2屈服階段、3強化階段、4頸縮階段。
在比例階段:應力應變成正比;屈服階段:由於金屬晶粒產生滑移而暫時失去抵抗破壞的能力,從拉伸圖可看到上下波動圖形稱為屈服平台;強化階段:晶粒滑移完成,材料又恢復抵抗破壞的能力;頸縮階段:材料完全失去抵抗破壞的能力。
從拉伸圖可知:屈服點有上下二個,工程使用的是下屈服點,也就是在屈服期間,不計初始瞬時效應的最低值。
屈服強度計算:用拉伸試驗讀取的下屈服點力值(N),除以試件截面面積(㎜²),所得即屈服強度。單位 N/㎜²
『貳』 鋼筋屈服強度怎麼計算
鋼筋屈服強度計算方法:
屈服強度的計算公式:σ=F/S,
其中σ為屈服強度,單位為「MPa」,
對鋼筋來講,F為鋼筋發生塑性變形量為原長的0.2%時所受的力,單位為「N」,
S為鋼筋的橫截面積,單位為「m^2」。

(2)後繼屈服力怎麼算擴展閱讀:
屈服強度是金屬材料發生屈服現象時的屈服極限,亦即抵抗微量塑性變形的應力。對於無明顯屈服的金屬材料,規定以產生0.2%殘余變形的應力值為其屈服極限,稱為條件屈服極限或屈服強度。
大於此極限的外力作用,將會使零件永久失效,無法恢復。如低碳鋼的屈服極限為207MPa,當大於此極限的外力作用之下,零件將會產生永久變形,小於這個的,零件還會恢復原來的樣子。
(1)對於屈服現象明顯的材料,屈服強度就是屈服點的應力(屈服值);
(2)對於屈服現象不明顯的材料,與應力-應變的直線關系的極限偏差達到規定值(通常為0.2%的原始標距)時的應力。通常用作固體材料力學機械性質的評價指標,是材料的實際使用極限。因為在應力超過材料屈服極限後產生頸縮,應變增大,使材料破壞,不能正常使用。
『叄』 鋼筋的屈服強度怎麼算,計算公式是什麼
鋼筋的屈服強度是鋼筋的力學性能指標,是『物性』,是指定鋼筋的本性,不是計算出來的,而是拉力試驗檢測出來的。是檢測到的試件屈服拉力除以試件截面積得到的應力。
設計計算時,只用它的抗拉強度設計值,而不是標准值,也不是檢測出來的『個值』或平均值。
『肆』 抗拉強度的計算公式是什麼
計算公式為:σ=Fb/So
式中:Fb--試樣拉斷時所承受的最大力,N(牛頓); So--試樣原始橫截面積,mm²。
試樣在拉伸過程中,材料經過屈服階段後進入強化階段後隨著橫向截面尺寸明顯縮小在拉斷時所承受的最大力(Fb),除以試樣原橫截面積(So)所得的應力(σ),稱為抗拉強度或者強度極限(σb),單位為N/
之間有一定的經驗關系。
『伍』 鋼筋的屈服強度是什麼怎麼計算
屈服強度又稱為屈服極限 ,是材料屈服的臨界應力值。
(1)對於屈服現象明顯的材料,屈服強度就是屈服點的應力(屈服值);
(2)對於屈服現象不明顯的材料,與應力-應變的直線關系的極限偏差達到規定值(通常為0.2%的永久形變)時的應力。通常用作固體材料力學機械性質的評價指標,是材料的實際使用極限。因為在應力超過材料屈服極限後產生頸縮,應變增大,使材料破壞,不能正常使用。
當應力超過彈性極限後,進入屈服階段後,變形增加較快,此時除了產生彈性變形外,還產生部分塑性變形。當應力達到B點後,塑性應變急劇增加,應力應變出現微小波動,這種現象稱為屈服。這一階段的最大、最小應力分別稱為上屈服點和下屈服點。由於下屈服點的數值較為穩定,因此以它作為材料抗力的指標,稱為屈服點或屈服強度(ReL或Rp0.2)。
有些鋼材(如高碳鋼)無明顯的屈服現象,通常以發生微量的塑性變形(0.2%)時的應力作為該鋼材的屈服強度,稱為條件屈服強度(yield strength)。
所以,如果其它的外部和內部條件都一樣的話,內徑尺寸增加0.1mm對屈服強度沒有任何影響.
『陸』 鋼筋屈服點、抗拉強度、伸長率、怎麼算帶公式。
屈服強度:72.5*1000N/(16²π/4mm²)=360.77 MPa
抗拉強度:108*1000N/(16²π/4mm²)=537.4MPa
延伸率:(96-80)/80=20%
屈服強度:
是金屬材料發生屈服現象時的屈服極限,亦即抵抗微量塑性變形的應力。對於無明顯屈服的金屬材料,規定以產生0.2%殘余變形的應力值為其屈服極限,稱為條件屈服極限或屈服強度。
大於此極限的外力作用,將會使零件永久失效,無法恢復。
抗拉強度:
是金屬由均勻塑性變形向局部集中塑性變形過渡的臨界值,也是金屬在靜拉伸條件下的最大承載能力。
表徵材料最大均勻塑性變形的抗力,拉伸試樣在承受最大拉應力之前,變形是均勻一致的,但超出之後,金屬開始出現縮頸現象,即產生集中變形。
伸長率:
是指在拉力作用下,密封材料硬化體的伸長量占原來長度的百分率(單位:%)。

(6)後繼屈服力怎麼算擴展閱讀
屈服點
低屈服點鋼作為消能抗震設計中主要部件的製作材料,其研製、發展自20 世紀90 年代以來受到廣泛關注,並在鋼種的研製和工程應用方面取得顯著進展。
低屈服點鋼採用接近工業純鐵的成分設計,通過晶粒粗化及添加少量Ti、Nb 固定C、N 原子以降低其對位錯運動的阻礙作用。Ti 在鋼中可依次形成TiN→Ti4C2S2→TiS 和TiC,所有多餘的Ti(Ti-3.42N-1.5S)最後可以形成TiC。
台灣中鋼的研究表明,鋼中多餘的Ti 量達到0.03%或者與3.99C 比值為2 時,鐵素體晶粒尺寸顯著增加,認為較多的Ti 使得TiN、TiS 和TiC 等顆粒粗化從而失去晶界釘扎作用。
低屈服點鋼按其屈服強度基本可以劃分為100MPa、160MPa 和225MPa。
抗拉強度的實際意義:
2、對脆性金屬材料而言,一旦拉伸力達到最大值,材料便迅速斷裂了,所以σb就是脆性材料的斷裂強度,用於產品設計,其許用應力便以σb為判據。
3、σ的高低取決於屈服強度和應變硬化指數。在屈服強度一定時,應變硬化指數越大,σb也越高。
4、抗拉強度σb與布氏硬度HBW、疲勞極限
『柒』 屈服強度怎麼計算
屈服強度、上屈服強度、下屈服強度可以按以下公式來計算:
屈服強度計算公式:Re=Fe/So;Fe為屈服時的恆定力。
上屈服強度計算公式:Reh=Feh/So;Feh為屈服階段中力首次下降前的最大力。
下屈服強度計算公式:ReL=FeL/So;FeL為不到初始瞬時效應的最小力FeL。
試驗時,當測力度盤的指針首次停止轉動的恆定力或者指針首次回轉前的最大力或者不到初始瞬時效應的最小力,分別對應著屈服強度、上屈服強度、下屈服強度。

(7)後繼屈服力怎麼算擴展閱讀:
金屬材料發生屈服現象時的屈服極限,亦即抵抗微量塑性變形的應力。對於無明顯屈服的金屬材料,規定以產生0.2%殘余變形的應力值為其屈服極限。
大於此極限的外力作用,將會使零件永久失效,無法恢復。如低碳鋼的屈服極限為207MPa,當大於此極限的外力作用之下,零件將會產生永久變形,小於這個的,零件還會恢復原來的樣子。
大於屈服強度的外力作用,將會使零件永久失效,無法恢復。如低碳鋼的屈服極限為207MPa,當大於此極限的外力作用之下,零件將會產生永久變形,小於這個的,零件還會恢復原來的樣子。
『捌』 屈服強度的計算方法
屈服強度計算公式:Re=Fe/So;Fe為屈服時的恆定力。
上屈服強度計算公式:Reh=Feh/So;Feh為屈服階段中力首次下降前的最大力。
下屈服強度計算公式:ReL=FeL/So;FeL為不到初始瞬時效應的最小力FeL。
試驗時用自動記錄裝置繪制力-夾頭位移圖。要求力軸比例為每mm所代表的應力一般小於10N/mm²,曲線至少要繪制到屈服階段結束點。在曲線上確定屈服平台恆定的力Fe、屈服階段中力首次下降前的最大力Feh或者不到初始瞬時效應的最小力FeL。

(8)後繼屈服力怎麼算擴展閱讀
影響屈服強度的內在因素有:結合鍵、組織、結構、原子本性。
如將金屬的屈服強度與陶瓷、高分子材料比較可看出結合鍵的影響是根本性的。從組織結構的影響來看,可以有四種強化機制影響金屬材料的屈服強度,這就是:
(1)固溶強化;
(2)形變強化;
(3)沉澱強化和彌散強化;
(4)晶界和亞晶強化。
沉澱強化和細晶強化是工業合金中提高材料屈服強度的最常用的手段。在這幾種強化機制中,前三種機制在提高材料強度的同時,也降低了塑性,只有細化晶粒和亞晶,既能提高強度又能增加塑性。
影響屈服強度的外在因素有:溫度、應變速率、應力狀態。
隨著溫度的降低與應變速率的增高,材料的屈服強度升高,尤其是體心立方金屬對溫度和應變速率特別敏感,這導致了鋼的低溫脆化。
應力狀態的影響也很重要。雖然屈服強度是反映材料的內在性能的一個本質指標,但應力狀態不同,屈服強度值也不同。通常所說的材料的屈服強度一般是指在單向拉伸時的屈服強度。
『玖』 求:屈服強度的計算方法
總體是:
屈服強度=屈服時載荷/試樣的面積。
工程上採用規定一定的殘留變形量的方法,確定屈服強度,常用的標准有三種:
第一種是比例極限,應力-應變曲線上符合線性關系的最高應力值,用σP表示,超過σP時,即認為材料開始屈服;第二種是彈性極限,試樣載入後再卸載,以不出現殘留的永久變形為標准,材料能夠完全彈性恢復的最高應力值,用σd表示,超過σd時,即認為材料開始屈服;第三種是屈服強度,以規定發生一定的殘留變形為標准,如通常以0.2%殘留變形的應力作為屈服強度,用σ0.2或σys表示。
上述定義都是以殘留變形為依據的,彼此區別在於規定的殘留變形量不同。現行國家標准將屈服強度規范為下列三種情況。
(1)規定非比例伸長應力(σP) 試樣在載入過程中,標距長度內的非比例伸長量達到規定值(以%表示)的應力,如σP0.01,σP0.05等。
σP通常用圖解法測定,對有明顯彈性直線段的材料,可利用自動記錄的載荷-伸長(P-ΔL)曲線。自彈性直線段與伸長軸的交點O起,截取一相應於規定非比例伸長的線段OC(OC=nLeεp,其中n為拉伸圖放大倍數,Le為引伸計標距,εp為規定的非比例伸長率),過C點作彈性直線段的平行線CA,交曲線於A點,A點對應的載荷Pp即為所測定的非比例伸長載荷,規定非比例伸長應力由下式計算
σP =Pp/S0
(2)規定殘余伸長應力(σr) 試樣卸載後,其標距部分的殘余伸長達到規定比例時的應力,常用的為σr0.2,即規定殘余伸長率為0.2%時的應力值。
測定σr通常用卸載法,即當卸載後所得殘余伸長為規定殘余伸長載荷Pr,規定殘余伸長應力由下式計算
σr=Pr/S0
(3)規定總伸長應力(σt) 試樣標距部分的總伸長(彈性伸長與塑性伸長之和)達到規定比例時的應力。應用較多的規定總伸長率為0.5%、0.6%和0.7%,相應地,規定總伸長應力分別記為σt 0.5,σt 0.6和σt 0.7。
測定σt也用圖解法,操作與測定σP相同,拉伸圖橫軸放大倍數不小於50倍。在P-ΔL曲線上,自曲線原點O起,截取相應於規定總伸長的線段OE(OE=n·Le·εt,式中εt為規定總伸長率),過E點作縱軸平行線EA交曲線於A點,A點對應的載荷即為規定總伸長的載荷,規定總伸長應力由下式計算:
σt=Pt/S0
在上述屈服強度的測定中,σP和σt是在試樣載入時直接從應力-應變(載荷-位移)曲線上測量的,而σr則要求卸載測量。由於卸載法測定殘余伸長應力σr比較困難,而且效率低,所以,在材料屈服抗力評定中,更趨於採用σP和σt。σt在測試上又比σP方便,而且不失σP表徵材料屈服特徵的能力,所以,可以用σt,代替σP,尤其在大規模工業生產中,採用σt的測定方法,可以提高效率。
對於不連續屈服即具有明顯屈服點的材料,其應力-應變曲線上的屈服平台就是材料屈服變形的標志,因此,屈服平台對應的應力值就是這類材料的屈服強度,記作σys按下式計算:
σys=Py/S0
式中 Py——為物理屈服時的載荷或下屈服點對應的載荷。
屈服強度是應用最廣的一個性能指標。因為任何機械零件在工作過程中,都不允許發生過量的塑性變形,所以,機械設計中,把屈服強度作為強度設計和選材的依據。
