當前位置:首頁 » 挖礦知識 » 量子量挖礦

量子量挖礦

發布時間: 2023-10-31 14:42:24

1. 你知道什麼是量子嗎你知道什麼是量子比特嗎

下面這句話,用的就全是專業概念:「基於量子疊加原理,一個量子比特可以同時處於0狀態和1狀態。」說得明確一點就是,n個量子比特能存儲2的n次方個比特的信息。奇妙的是,說這番話的不是民科,而是2016年以來大火的《寶寶的物理學》系列的作者克里斯·費利(Chris Ferrie)博士。這是他在《寶寶的量子信息學》里寫的。他甚至還做了一個幽默的比喻:為了存儲我最喜歡的一個分子(咖啡因)的信息,就需要地球上所有的手機!

下面我們來從頭解釋起。

量子比特是什麼?

「比特」是計算機科學的基本概念,指的是一個體系有且僅有兩個可能的狀態,一般用「0」和「1」來表示。典型的例子,如硬幣的正、反兩個面或者開關的開、關兩個狀態。

但在量子力學中,有一條基本原理叫做「疊加原理」:如果兩個狀態是一個體系允許出現的狀態,那麼它們的任意線性疊加也是這個體系允許出現的狀態。

現在問題來了,什麼叫做「狀態的線性疊加」?為了說清楚這一點,最方便的辦法是用一種數學符號表示量子力學中的狀態,就是在一頭豎直一頭尖的括弧「|>」中填一些表示狀態特徵的字元。這種符號是英國物理學家狄拉克發明的,稱為「狄拉克符號」。 在量子信息中,經常把兩個基本狀態寫成|0>和|1>。而|0>和|1>的線性疊加,就是a|0> + b|1>,其中a和b是兩個數,這樣的狀態稱為「疊加態」。「線性」意味著用一個數乘以一個狀態,「疊加」意味著兩個狀態相加,「線性疊加」就是把兩個狀態各自乘以一個數後再加起來。

現在,你明白「一個量子比特可以同時處於0狀態和1狀態」是什麼意思了吧?它實際是說,量子比特可以處於|0>和|1>的疊加態。在一個時刻只會處於一個這樣的確定的狀態,既不是同時處於兩個狀態,也不是迅速在兩個狀態之間切換,也不是處於一個不確定的狀態,更不是時空分裂。

不得不說,「同時處於0狀態和1狀態」是一個很容易令人糊塗的說法,好像禪宗的打機鋒,遠不如旋鈕的比喻清楚易懂。更糟糕的是,讀者可能會以為自己懂了,然後胡亂引申,造成更大的誤解。在科普文章中,類似這樣的令人似懂非懂的說法太多了,簡直是遍地陷阱。

那麼,為什麼許多人言之鑿鑿地說,n個量子比特包含2的n次方個比特的信息?

要讓這句話有意義,關鍵在於:把a|0> + b|1>中的a和b這兩個系數,當作兩個比特的信息。這當然不是個嚴格的說法,因為把連續變數和離散變數混為一談了。不過只要你姑且接受這種表述,你就可以明白,他們實際想說的是,「n個量子比特包含2的n次方個系數」,這就是正確的了。

這是怎麼算出來的?

對於一個量子比特,n = 1,體系可以取的狀態是a|0> + b|1>,有a和b兩個系數,系數的個數等於2的1次方。

對於兩個量子比特,n = 2,體系可以取的狀態是……是什麼?

你也許會覺得,第一個量子比特的狀態是a1|0> + b1|1>,第一個量子比特的狀態是a2|0> + b2|1>,總共有4個系數。

錯了!按照這種方式,當你有第三個量子比特時,只是增加a3|0> + b3|1>的兩個系數,總共有6個系數。廣而言之,每個量子比特提供兩個系數,所以n個量子比特包含的系數個數就是2n,怎麼會是2的n次方呢?

真正的關鍵在於,對於多量子比特的體系,基本的描述方式並不是「第一個量子比特處於某個態,第二個量子比特處於某個態……」,而是「系統整體處於某個態」。

系統整體可以處於什麼態呢?再次回憶疊加原理(敲黑板)!是的,疊加原理對多粒子體系也適用。 所以,我們要做的就是找出多粒子體系可以處於的基本狀態,而這些多粒子基本狀態是由單粒子的|0>態和|1>態組合而成的。下面我們來看這些基本狀態。

首先,你可以讓每一個量子比特都處於自己的|0>態,這時系統整體的狀態是所有這n個|0>態的直接乘積(稱為「直積」),可以簡寫為|000…>,狄拉克符號里有n個「0」。

然後,在這個態的基礎上,你可以讓第一個量子比特變成自己的|1>態,這時系統整體的狀態是|100…>,這也是一個直積態。

然後,在|000…>的基礎上,你可以讓另一個量子比特(比如說第二個)變成自己的|1>態,這時系統整體的狀態是|010…>。這樣,你可以走遍所有的由n-1個「0」和1個「1」組成的字元串。

然後,在|000…>的基礎上,你可以讓兩個量子比特變成自己的|1>態。這樣,你可以走遍所有的由n-2個「0」和2個「1」組成的字元串。

這個過程繼續下去,最終你會把所有的量子比特都變成自己的|1>態,得到由n個「1」表示的|111…>這個態。在這個過程中,你得到了所有的由「0」和「1」組成的長度為n的字元串。

這樣的態總共有多少個呢?第一位有2種選擇,第二位也有2種選擇,一直到第n位都是2種選擇。所有這些選擇乘起來,就是2的n次方種選擇。注意是相乘,而不是相加。在高中學過排列組合、二項式定理的同學們,肯定都看明白了吧?

機智如我,早已看穿了一切。

順便說一下,這樣的一個n粒子狀態,有可能可以表示成n個單粒子狀態的乘積,這時我們稱它為「直積態」,但更常見的是不能表示成n個單粒子狀態的乘積,這時我們稱它為「糾纏態」。作為一個簡單的例子,二粒子體系的(|00> + |11>) / √2就是一個糾纏態。你可以試著證明一下,很容易的~

2. 什麼是量子計算

量子計算是一種基於量子物理學的計算形式。經典計算機依靠位(零或一)進行計算,而量子計算機使用利用量子力學以「疊加」形式存在的量子位(量子位):零和一的組合,每個都有一定的概率。例如,一個量子位可能有 80% 的幾率為零,20% 的幾率為零。或者 60% 的機會為零,40% 的機會成為 1。等等。

1980 年代,物理學家保羅·貝尼奧夫 (Paul Benioff) 首次提出了量子計算的概念。不久之後,理論物理學家理查德·費曼和數學家尤里·曼寧率先提出量子計算機可以解決經典計算機無法解決的問題。事實上,在 1990 年代,數學家 Peter Shor 開發了一種演算法,量子計算機可以用它來破解公鑰密碼學:「 Shor 演算法」——如果量子計算機變得足夠強大的話。

2019 年 10 月,經過數十年的研究,谷歌正式宣稱已達到「量子霸權」。這實質上意味著量子計算機解決了經典計算機無法解決的問題。或者,更具體地說,它在 200 秒內解決了一個問題,即使是最強大的經典超級計算機也需要 10,000 年才能解決。

雖然這是一個重大突破,但量子計算機似乎離運行 Shor 的演算法還有很長的路要走。一方面,目前的量子計算機還不夠強大,而且不清楚擴大這項技術的難易程度。此外,要真正發揮作用,量子計算機依賴於一種稱為「糾錯」的技術解決方案,這仍然是一個挑戰。

預測這項技術的未來發展很困難,但可以運行 Shor 演算法的量子計算機可能需要數年甚至數十年的時間——也許它們根本不可能實現。

如果量子計算機能夠運行 Shor 演算法並破解公鑰密碼學,那麼比特幣確實可能會受到攻擊。具體來說,一些硬幣可能會被盜。

然而,有些人認為盜竊會受到一定程度的限制。雖然所有硬幣都由公鑰加密(目前是 ECDSA 演算法)保護,但大多數硬幣也由 SHA256 散列演算法保護。只有當這兩種演算法都被破解時,所有硬幣才能徹底被盜,但目前看來 SHA256(或任何其他哈希演算法)似乎無法被量子計算機破解。

也就是說,大量的硬幣只能通過公鑰密碼術來保護。目前的估計表明,如果公鑰密碼體制被破解,大約 500 萬比特幣將被盜。以下是比特幣可能面臨風險的一些情況:

事實上,即使比特幣同時受到公鑰和哈希的保護,在「量子世界」中安全地使用這種比特幣也可能是一個挑戰。當用戶嘗試花費他們的比特幣並通過比特幣網路傳輸交易時,攻擊者將有機會嘗試竊取資金。此時,攻擊者可以在交易確認之前嘗試破解公鑰加密,然後將比特幣重新發送到他自己的地址之一。

我只想說,如果量子計算機突然變得比任何人預期的都要強大,比特幣就會有問題。

需要注意的是,如果可以運行肖爾演算法的量子計算機突然出現,比特幣不太可能成為第一個或主要的目標。公鑰加密可以保護世界上幾乎所有其他數字信息,包括軍事情報、銀行數據和其他現有金融基礎設施、通信網路等。

是的,比特幣協議可以升級為抗量子。

簡而言之,比特幣的簽名演算法將不得不被量子抗性簽名演算法所取代。由於隔離見證的激活,比特幣的簽名演算法可以通過向後兼容的軟分叉升級相對容易地被替換。(當前的 ECDSA 簽名演算法可能會在不久的將來通過軟分叉被 Schnorr 簽名演算法部分取代。)

升級後,用戶應該將他們的比特幣遷移到新地址,以便受到抗量子簽名演算法的保護。在量子計算機可以運行 Shor 演算法之前,沒有及時遷移的用戶將面臨比特幣以某種方式被盜的風險。

如果比特幣沒有及時轉移到安全地址,比特幣協議也可能會升級以阻止比特幣被消費。這種措施意味著原始所有者也會丟失比特幣——但是,當然,無論如何,他們很可能會將比特幣丟失給攻擊者。(有人建議,這些比特幣可能會被其合法所有者通過零知識證明密碼術解鎖——但這仍然是非常投機的。)

鑒於量子計算的當前發展狀況,預計比特幣將有足夠的提前警告,表明需要進行升級。專家認為,我們還沒有接近那個時間點。

量子計算機或許能夠比傳統計算機更快地挖掘比特幣。然而,因為比特幣挖掘是基於散列(而不是公鑰密碼學),所以它可能不會被破壞到任何有意義的程度。

相反,量子計算的出現可能會導致一場新的軍備競賽,以建立最快的采礦硬體,直到找到新的平衡點。當 GPU 取代 CPU 和 ASIC 取代 GPU 時,比特幣挖礦格局已經發生了類似的演變。

3. 量子計算機挖礦能把幣挖成負數么

能。根據量子力學計算得知,挖比特幣的過程其實就是重復執行一個SHA256的運算過程,量子計算機挖礦能把幣挖成負數,通過挖礦所產生的數字加密貨幣都會被其壟斷,加密貨幣的信任系統將會土崩瓦解。據科學家分析,一旦量子計算機出現,強大的算力將破解比特幣,比特幣將歸零。

4. 量子計算機會破壞比特幣和互聯網嗎

  • 在當前情況下,量子計算機無法幫助進行比特幣挖礦
  • 轉向量子計算機不會影響挖礦速度,因為隨著價格的飆升,挖礦難度也會增加
  • 確實,量子演算法的推出將使傳統的加密貨幣系統面臨風險

量子計算機對比特幣挖礦的影響

在目前的情況下,我們沒有這樣的量子演算法,但是如果將來我們發現它,該怎麼辦?眾所周知,比特幣旨在識別挖礦速度,並且同樣提高了挖礦難度。意味著找到演算法後難度將變得更加復雜。

實際上,現在實際上不可能使用普通計算機進行挖礦,因此礦工使用ASIC晶元來挖比特幣。當前,使用了兩種加密貨幣,RSA和橢圓曲線加密貨幣。實際上,這兩種加密貨幣方法都容易受到量子計算機的攻擊。 根據Anastasia的說法,我們只需要2500 cubits即可中斷algoant中斷EC,而需要約4000 cubit才能中斷RSA。

黑客可以識別比特幣錢包地址

在當前情況下,硬分叉是不可能的,因為許多用戶丟失了他們的錢包地址和硬幣。現在,令人擔憂的因素是,量子計算機可以輕松地幫助追蹤那些丟失的錢包,而黑客可以使用此類計算機解密並獲取此類丟失的硬幣。

但是,主要的關注點是量子計算機的研究。此類計算機系統的進入將使加密貨幣系統面臨風險。該系統可能是比特幣的破壞者。

5. pee量子挖礦靠譜嗎

目前收益個人感覺還行,一個月,基本回本了

6. 比特幣價值將歸零谷歌計劃2029年前量子計算商用化

(思進註: 1994年,數學家Peter Shor公布了一種量子演算法,該演算法可以打破最常見的非對稱密碼演算法的安全性假設。這意味著擁有足夠大量子計算機的任何人,都可以使用此演算法通過公鑰反算出私鑰,從而偽造任何數字簽名。這是否意味著比特幣將會被量子計算機crack down…… 事實上,中心化的密鑰體系PKI,確實會有這個風險,因為大多數應用是CA+10的6次方。海量反編譯,是可以推算出中心密碼本的!也就是說,偽造PKI數字簽名是有可能的, 拭目以待吧……再轉發下文,和大家分享……)

谷歌計劃2029年前量子計算商用化,比特幣價值將歸零?

作者 | 新浪 財經

來源 | 華爾街見聞

量子計算何以對比特幣構成威脅?

在解釋這個問題前,需要先了解以下幾個知識點。

經典計算機採用二進制,用0和1構建了底層代碼的一切。量子計算機可以同時儲存和表示0和1疊加態。比特幣挖礦基於計算一種名為SHA-256的哈希函數(一種函數演算法,把任意一個字元串輸入SHA-256函數,都會輸出一個256位的二進制數)的正確值。每一個比特幣用戶在注冊的時候,系統都會生成一個隨機數,再對這個隨機數進行SHA256再進行hash160,產生一個叫做私鑰的字元串。作為數字簽名。私鑰可以對一串字元進行加密。而公鑰可以把私鑰加密之後的數據進行和解密。加密和解密的鑰匙不一樣的這種加密方式,稱之為非對稱加密。通過公鑰反算不出私鑰。如果私鑰遺失,那麼擁有者的比特幣就無法取出。

基於上述原因,由於SHA-256的正確值十分難計算,數量有限的比特幣才會變得極為稀缺和珍貴。同時由於經典計算機無法通過公鑰反算出私鑰,私人擁有的比特幣才無法被他人獲得。

但在1994年,數學家Peter Shor公布了一種量子演算法,該演算法可以打破最常見的非對稱密碼演算法的安全性假設。這意味著擁有足夠大量子計算機的任何人,都可以使用此演算法通過公鑰反算出私鑰,從而偽造任何數字簽名。

故而,在量子計算面前,比特幣的挖礦將變得輕而易舉,通過公鑰也能反算出私鑰。這令比特幣變得不再稀缺,也不再安全。

同時意味著比特幣的共識將產生崩塌,比特幣的價值也將趨零。

關於量子力學,廣為人知的還有光的波粒二象性、觀測者效應,和一個著名的思想試驗——薛定諤的貓。

量子世界是如此不合常理,以至於它曾令說出「上帝不會擲骰子「愛因斯坦,都感到困惑不解。

無論如何,量子計算機的出現,對經典計算機形成了巨大挑戰。而隨著量子計算研究進程的遞進,比特幣的破解,或許在2029年前就將成為可能。

谷歌的量子計算進程如何?

早在2019年,谷歌發表在《自然》雜志上的論文稱,其開發的54比特(其中53個量子比特可用)超導量子晶元「Sycamore」,對53比特、20深度的電路采樣一百萬次僅需200秒,最強的經典超級計算機Summit要得到類似的結果,則需要一萬年。基於這一突破,谷歌宣稱實現了「量子霸權「。

而近日在 Google I/O 大會上,領導谷歌 Quantum AI(量子 人工智慧)團隊的的科學家Hartmut Neven表示,谷歌計劃在2029年前建造數十億美元的量子計算機並將其正式商用。

谷歌的目標是建造有著100萬個量子比特的計算機。不過,谷歌同時表示,首先需要減少量子比特產生的錯誤,然後才能考慮將1000個量子比特一起構建為一個邏輯量子比特。這將為「量子晶體管」打下基礎,「量子晶體管」是未來量子計算機的基礎。目前谷歌的量子計算機只有不到100個量子比特。但要知道,互聯網誕生至今不過52年,第一台通用計算機誕生至今不過75年.

谷歌目前正在加利福尼亞州擴建一個新園區,用以專注於量子計算方面的研究工作,擴建工程將於2020年底正式完工。

在量子計算領域大舉投資和押注的公司,除了谷歌,還有IBM、D-Wave Systems、霍尼韋爾(Honeywell)。

IBM Research總監Dario Gil曾表示,2023年將是量子計算大面積使用的轉折點,屆時將能通過軟體實時查看和更新量子計算的狀態,而不再是通過以往的硬體調整。

高德納咨詢公司 (Gartner)副總裁Chirag Dekate表示,過去五年中,量子計算的創新速度超過了此前的30年,他還預計到2025年,將有近40%的大公司制定量子計算計劃。

關於對抗量子計算,目前已出現量子密碼學的相關研究。一個名為The Open Quantum Safe (OQS)的開源項目已於2016年啟動,目標為開發抗量子的密碼形式。

7. 理論上量子計算機挖礦能力比普通計算機強嗎

子力學揭示了粒子具有波動性和不確定性,由兩個同一事件出現的兩個粒子具有鬼魅般的糾纏作用,科學家們已經利用量子糾纏特性,實現了粒子的遠距離傳輸,那離我們人類的遠距離傳送還有多遠呢?目前這項技術還不成熟。但量子力學還會有其他的潛在價值,那就是我們正在研究的並且已經初步實現的量子計算機,它跟我們普通的計算機有什麼區別呢?它的計算能力有多強大?絕對超乎你的現象。

光子遠距離傳輸

量子計算機是怎樣工作的
科學家努利使用新方法試圖去利用量子力學!

量子計算機內部構造

這是一台量子計算機的內部構造,這些金色黃銅部分製成的精密部分與我們日常生活中所看到的電腦完全不同,但是量子計算機的運算核心仍然使用二進制代碼。

二進制代碼

二進制代碼是一種由0和1也就是比特構成的計算機語言,信息集中最小的單位是比特,而電腦只是簡單的把信息破解成最小的組合,然後非常快速的將他們變換,量子計算機也是使用比特,但是不同於傳統的比特而是可以在任何時候轉換成0或者1,因為量子是疊加態,它既可以是0也可以是1,量子比特更加具有靈活性。

電子的靈活性

電子混合在一起不停的順時針或者逆時針旋轉,這是量子比特也混合在一起一會表示0一會表示1,因此量子位可以同時完成很多相任務!這意味著我們可以完成之前我們不能想像的計算任務。理論上我們可以用任何東西製造量子比特,比如電子或者原子,量子位處在計算機的核心部位,它是由量子技術製造的超級傳導迴路,可以同時向兩個方向運行。由於量子比特具有如此優秀的多任務工作特點,如果我們能找到使它們集合起來解決問題的方法,那麼我們的計算機能力將會是成倍的增長。
量子計算機為什麼可以具有如此強大的能力
假如一個人被困在了迷宮里,他要做的就是盡快找到出路,但問題是岔路太多,死胡同太多!我們不得不去常識每一條路,盡可能快的找到出路,走過太多的彎路,碰到太多的死胡同,最後有幸才找到出路,這就是傳統計算機計算的方式!不挺的嘗試!盡管他們處理的很快,但是他們一次只能處理一個任務,就像人在迷宮里一次只能探一條路!

8. 你知道什麼是量子計算機嗎什麼是量子霸權

你知道什麼是量子計算機嗎?什麼是量子霸權?

一、什麼是量子計算機?

量子計算機顧名思義,它就是一種計算機,但是是基於量子理論而研發出來的一種計算機,這種量子計算機一般可以同時處在多個狀態之下,因為我們普通的計算機一般都是二進制的量子計算機,它可以在多個狀態之下被使用,所以比我們普通的計算機應用的范圍更加廣泛一點,量子計算機在經過了多年的研究之後,於2019年的時候推出了世界上第一台計算機系統,這是一台商用的量子計算機。

熱點內容
數字貨幣與區塊鏈技術聯系 發布:2025-06-09 13:17:28 瀏覽:999
區塊鏈偽造輸入 發布:2025-06-09 13:15:42 瀏覽:12
幣圈發4條推文 發布:2025-06-09 13:10:52 瀏覽:587
usdt跑分幣怎麼收回 發布:2025-06-09 12:54:04 瀏覽:649
貝寶金融幣圈有限公司 發布:2025-06-09 12:54:01 瀏覽:522
usdt買過柴犬幣後顯示凍結 發布:2025-06-09 12:43:11 瀏覽:113
比特幣暴跌反彈 發布:2025-06-09 12:20:11 瀏覽:59
幣圈日線w底 發布:2025-06-09 12:06:29 瀏覽:7
比特幣在我們中國能消費么 發布:2025-06-09 11:47:23 瀏覽:446
為什麼很多區塊鏈區公眾號封了 發布:2025-06-09 11:46:31 瀏覽:217