元宇宙与非线性光学晶体
1. 非线性光学材料的简介
利用非线性光学晶体的倍频、和频、差频、光参量放大和多光子吸收等非线性过程可以得到频率与入射光频率不同的激光,从而达到光频率变换的目的。
这类晶体广泛应用于激光频率转换、四波混频、光束转向、图象放大、光信息处理、光存储、光纤通讯、水下通讯、激光对抗及核聚变等研究领域。
我国在非线性光学晶体研制方面成绩卓著,某些晶体处于世界领先地位。
2. 什么是非线性光学
什么是非线性器件?
比例关系就是线性关系。不是比例关系就是非线性关系。这是因为比例关系可以用直线表示,而非比例关系不是直线关系。
一个元器件的参数之间的关系是非线性的关系,那么这个元器件就是非线性元器件。
电阻上的电流和电压的关系是线性关系,所以电阻就是线性器件。半导体中的伏安特性曲线就不是直线,就不是线性关系,所以半导体也就是非线性器件。
电器元件中常常用到非线性器件,应用电子器件的非线性来完成非线性未完成的各种功能(如振荡,频率变换等)的电路统称为非线性电子线路.
分析非线性器件响应特性时,必须注明它的控制变量,控制变量不同,描述非线性器件的函数也不同.
非线性器件的描述与控制变量有关,并且可能出现负值参数。
非线性器件分析不满足叠加原理。
非线性器件不但在电子电路中应用,在其它领域里也都存在。
具有非线性光学效应的晶体称为非线性光学晶体。利用晶体的非线性光学效应,可以制成二次谐波发生器,上、下频率转换器,光参量振荡器等非线光学器件。激光器产生的激光可通过非线性光学器件进行频率转换,从而获得得更多有用波长的激光,使激光器得到更广泛的应用。
在液压系统中,控制阀几乎都是非线性器件,其输入与输出之间的关系或是“凹”,或是“凸”,或是“S”型。甚至还有一些控制阀的动作极不正常,使流量控制问题变得更糟。而变频驱动(VFD)其本身是一个非线性设备,但是能节省能源。
3. 非线性晶体是什么
在传统的线性光学范围内,一束光通过晶体后,光的频率不会改变。然而当光通过某种晶体后产生频率为入射光两倍的光,则将这种现象称为非线性光学效应。产生非线性光学效应的晶体叫非线性光学晶体。这种晶体必须是非中心对称晶体。
链接有点卡就是了
4. 陈创天在非线性光学晶体研究领域有什么成就
陈创天被认为是非线性光学晶体研究领域的国际权威,2002年,他所领导的研究组和合作者,在国际上首次实现了Nd:YV04激光的6倍频谐波光和Ti:Sapphire激光的4倍频和5倍频谐波光输出。此项研究131科学家传奇系列丛书成果先后获得1987年第三世界科学院化学奖,1990年美国激光工业技术成就奖,1999年度世界知识产权中国专利金奖。
陈创天
5. 非线性光学晶体是什么
非线性光学晶体是一种可以对激光束进行调制、调幅、调偏、调相的重要的光学晶体材料,是激光器中的一种重要材料。随着激光技术在工业、农业、军事、医学等领域中得到广泛应用,研制新型非线性光学晶体也成为国际光电子科技领域、新材料科技领域的前沿和热门课题。
20世纪60年代,美国贝尔实验室发现了铌酸锂晶体(LiNbO33),但由于该晶体具有严重的光感应折射变化,因此始终无法在较高功率激光器上作为倍频器件。70年代,美国杜邦公司中央实验室首次发现KTP晶体,但直到80年代才获得有工业应用价值的大尺寸KTP晶体。
自80年代以来,我国在非线性光学晶体材料的研制方面取得了长足进展。机电部209所首次研制出掺5%克分子的Mg:LiN-bO3晶体,使LiNbO3晶体的抗光损伤阈值提高到>10MW/cm2。该生长工艺当时被美国广泛采用。1989年该所成功研制出掺7%克分子的MgO:LiNbO3和rri:MgO:LiNbO3两种单晶,在保持高光学均匀性的同时,使晶体的抗光损伤阈值达到60MW/cm2。该晶体作为Nb:YAG激光腔内倍频晶体,其输出效率达61%,为同类晶体的国际最高水平。
中国科学院福建物质结构研究所经过多年的实验研究,于1984年正式宣布发现BBO晶体。该晶体的倍频系数是KDP晶体的4倍,相匹配范围可达到2.6μ~400nm(基波),紫外区的最短输出波长为189nm,从而满足了科学家们对400~20nm紫外区相干辐射的多方面的需要。因此,当时被国际激光科技界推崇为在光电子技术领域内可与大功率半导体激光器相提并论的最有意义的进展之一。随后,该所又推出一种更新的非线性光学晶体——LBO。这种晶体的出现解决了KIP、MgO:LiNbO3晶体不能用于强激光(>100MW/cm2)倍频的困难,并克服了BBO晶体的某些缺点,成为又一个有重要实用价值的新晶体。
在此基础上,中国科学院福建物质结构研究所于1989年,采用“晶体非线性光学效应离子基团理论”,系统地计算和研究了硼酸盐体系的基因结构和微观倍频效应、晶体紫外区吸收边的相互关系。在此理论研究的基础上通过化学合成、物化分析、晶体生长和系统的光学、电学测试,终于发明了一种具有很大实用价值的新型非线性光学晶体材料——三硼酸锂(LiB3O3)。该晶体在近红外、可见光和紫外波段高功率脉冲激光及高平均功率激光的倍频、和频、参量振荡和放大器件,腔内倍频器件等方面有广泛的用途。美国《激光和电光》杂志将这项发明评为1989年度国际十大高技术产品之一,井已在国内外一些实验室及激光工业界广泛使用。
新型非线性光学晶体三硼酸锂的研究成功,进一步促进了国内外研究硼酸盐非线性光学晶体材料与激光器件的深人发展。
6. 非线性光学晶体的基本定义
对于激光强电场显示二次以上非线性光学效应的晶体。
7. 几种非线性光学晶体倍频系数的测量
非线性光学是现代光学中的一个重要分支,它是在激光器出现以后发展起来的。作为非线性光学晶体中最重要的一类,无机非线性光学晶体由于具有高损伤阈值和化学稳定性,因而在激光技术中获得了广泛应用。
倍频系数是非线性光学晶体的一个基本参量,因而对于每种有用的非线性光学晶体,都需要测量它的倍频系数。Maker条纹法是实验测量非线性光学晶体倍频系数的一种重要方法,本文采用这种方法测量了一系列非线性光学晶体的Maker条纹,并将它们对比作为标准的KDP晶体Maker条纹,得到了这些晶体在1064.2nm波长下的倍频系数值。本论文共包括以下主要内容:(1)引言。这是本文的基础部分,简单介绍了非线性光学的基本理论,给出了处理Maker条纹时用到的一些公式,最后对非线性光学晶体进行了概述。
(2)非线性光学晶体倍频系数的测量理论。这一部分详细介绍了测量倍频系数常用的相位匹配法和Maker条纹法两种方法,并对这两种方法进行了对比,指出了测量时的注意事项。
(3)LBO族晶体倍频系数的测量。首先改进了原有的测量系统,特别是对光电倍增管的线性区进行了优化,从而大大提高了测量精度。然后利用改进后的系统测量了LBO、CBO和CLBO等晶体的倍频系数,并与之前的数值进行了对比。
(4)KBBF族晶体倍频性能研究,包括KBBF和RBBF晶体。本文测量得到了它们的Type-I和Rype-IIMaker条纹。鉴于目前RBBF晶体的折射率色散方程尚未拟合,文中参考KBBF的折射率色散方程和RBBF的白光折射率,通过对RBBF的相位匹配角进行数值拟合,得到了RBBF在1064.2nm和532.1nm的折射率数值,进而求解了这两种晶体的倍频系数。
(5)BPO晶体倍频系数的测量。BPO的紫外吸收边的波长很短,因而可以用来获得深紫外相干光源。本文采用Maker条纹法测量了它的倍频系数,为以后对它的进一步研究提供了重要参考。
8. 非线性光学晶体是如何被发现的
在20世纪60年代末,陈创天用来计算的只有手摇计算机,夜深人静时,为了降低那台手摇计算机发出的声音,他给手摇计算机垫上棉垫,并把门窗关紧,以便不影响他人休息。夜以继日孜孜不倦的探索,陈创天和他的研究组及合作者一起,相继发现了一系列举世瞩目的非线性光学晶体。
9. 非线性光学晶体,激光晶体及精密光学元器件的研发会用到什么分析仪器
光栅仪,波长计,功率计,光斑分析仪,需要挺多东西的