當前位置:首頁 » 幣種行情 » ltc1062應用

ltc1062應用

發布時間: 2023-07-13 22:53:50

❶ LTC 1062,我用LTC1062根據LTC提供的手冊做的 這個開關濾波器, 不能夠實現,電路連接也沒有問題

書上都是理想的狀態,而你用的器件都有一定的誤差,比如二級放大器,倍數就差的太遠了,你應該檢查你的器件的誤差值,進行修正,同時保證電路連接的正確性,要以及接地線對頻率的影響,整體電路需要屏蔽在金屬盒子內,相信結果會改變

❷ 能否詳細解釋一下有關高津托圖及其應用,或者有關的書籍呢

高津托圖形式的信息存儲結構是一種能夠避免冗餘的網狀結構.
其特點是每個零件和每個結構關系都僅出現一次1,其記錄結構明顯較樹型結構方式復雜.具體的說,其整體記錄分屬性和結構兩張表存儲,屬性表主要記錄不同零件的特徵屬性,結構表主要記錄各零件間連接關系.以圖7為例,記錄內容如圖8所示,左表為屬性表(屬性被略去),右表為結構表,「對應右表地址1」表示當前零件在結構表中做父件對應的第一條記錄的地址,「對應右表地址2」表示當前零件在結構表中做子件對應的第一條記錄的地址.「對應左表地址1」 「對應左表地址2」分別表示當前結構記錄的父件、子件在屬性表中的記錄地址.「父件下一地址」指向父件在結構表的下一記錄.「子件下一地址」同理.簡單的說,這種存儲方式通過結構指針的連接實現網狀圖的表達,自然的,其查詢及修改都將更加煩瑣和復雜,維護的難度相應增加.
在處理多樣化產品的問題上,高津托圖的存儲方式是通過增加類屬、包含與否等記錄欄位實現,但這樣以來又增加了安排需求計劃的難度,尤其是變化式樣僅僅表現在子件數量上的差異.對於小批量、多品種的生產,這種方式幾乎無優勢可言.
對於化工產品中的循環圈問題,高津托圖的存儲方式無法自然消化,如果不能保證在分解零件表時每個零件只計算一次,程序會陷入死循環.必須增加專門的維護程序來解決,避免上述情況的發生

❸ 急求《單片機C語言程序設計實訓100例——基於8051+Proteus模擬》第三部分綜合設計C語言源代碼

這本書一共5章節,你說第三部分指的哪裡?
第五章才是綜合設計部分啊,而且這部分有好多常式,也不知道你要哪部分?
第1章 8051單片機C語言程序設計概述 1
1.1 8051單片機引腳 1
1.2 數據與程序內存 5
1.3 特殊功能寄存器 6
1.4 外部中斷、定時器/計數器及串口應用 8
1.5 有符號與無符號數應用、數位分解、位操作 9
1.6 變數、存儲類型與存儲模式 11
1.7 關於C語言運算符的優先順序 13
1.8 字元編碼 15
1.9 數組、字元串與指針 16
1.10 流程式控制制 18
1.11 可重入函數和中斷函數 19
1.12 C語言在單片機系統開發中的優勢 20
第2章 Proteus操作基礎 21
2.1 Proteus操作界面簡介 21
2.2 模擬電路原理圖設計 22
2.3 元件選擇 25
2.4 調試模擬 29
2.5 Proteus與Vision 3的聯合調試 29
2.6 Proteus在8051單片機應用系統開發的優勢 30
第3章 基礎程序設計 32
3.1 閃爍的LED 32
3.2 雙向來回的流水燈 34
3.3 花樣流水燈 36
3.4 LED模擬交通燈 38
3.5 分立式數碼管循環顯示0~9 40
3.6 集成式數碼管動態掃描顯示 41
3.7 按鍵調節數碼管閃爍增減顯示 44
3.8 數碼管顯示4×4鍵盤矩陣按鍵 46
3.9 普通開關與撥碼開關應用 49
3.10 繼電器及雙向可控硅控制照明設備 51
3.11 INT0中斷計數 53
3.12 INT0及INT1中斷計數 55
3.13 TIMER0控制單只LED閃爍 58
3.14 TIMER0控制數碼管動態管顯示 62
3.15 TIMER0控制8×8LED點陣屏顯示數字 65
3.16 TIMER0控制門鈴聲音輸出 68
3.17 定時器控制交通指示燈 70
3.18 TIMER1控制音階演奏 72
3.19 TIMER0、TIMER1及TIMER2實現外部信號計數與顯示 75
3.20 TIMER0、TIMER1及INT0控制報警器與旋轉燈 77
3.21 按鍵控制定時器選播多段音樂 79
3.22 鍵控看門狗 82
3.23 雙機串口雙向通信 84
3.24 PC與單片機雙向通信 90
3.25 單片機內置EEPROM讀/寫測試 95
第4章 硬體應用 99
4.1 74HC138解碼器與反向緩沖器控制數碼管顯示 100
4.2 串入並出晶元74HC595控制數碼管顯示四位數字 103
4.3 用74HC164驅動多隻數碼管顯示 106
4.4 並串轉換器74HC165應用 110
4.5 用74HC148擴展中斷 112
4.6 串口發送數據到2片8×8點陣屏滾動顯示 115
4.7 數碼管BCD解碼驅動器CD4511與DM7447應用 117
4.8 62256RAM擴展內存 119
4.9 用8255實現介面擴展 121
4.10 可編程介面晶元8155應用 124
4.11 串列共陰顯示驅動器控制4+2+2集成式數碼管顯示 129
4.12 14段與16段數碼管演示 133
4.13 16鍵解碼晶元74C922應用 136
4.14 1602字元液晶工作於8位模式直接驅動顯示 139
4.15 1602液晶顯示DS1302實時時鍾 148
4.16 1602液晶屏工作於8位模式由74LS373控制顯示 153
4.17 1602液晶屏工作於4位模式實時顯示當前時間 155
4.18 1602液晶屏顯示DS12887實時時鍾 159
4.19 時鍾日歷晶元PCF8583應用 167
4.20 2×20串列字元液晶屏顯示 174
4.21 LGM12864液晶屏顯示程序 177
4.22 TG126410液晶屏串列模式顯示 184
4.23 Nokia7110液晶屏菜單控製程序 192
4.24 T6963C液晶屏圖文演示 199
4.25 ADC0832 A/D轉換與LCD顯示 211
4.26 用DAC0832生成鋸齒波 215
4.27 ADC0808 PWM實驗 217
4.28 ADC0809 A/D轉換與顯示 220
4.29 用DAC0808實現數字調壓 221
4.30 16位A/D轉換晶元LTC1864應用 223
4.31 I2C介面存儲器AT24C04讀/寫與顯示 225
4.32 I2C存儲器設計的中文硬體字型檔應用 233
4.33 I2C介面4通道A/D與單通道D/A轉換器PCF8591應用 237
4.34 I2C介面DS1621溫度感測器測試 241
4.35 用兼容I2C介面的MAX6953驅動4片5×7點陣顯示器 246
4.36 用I2C介面控制MAX6955驅動16段數碼管顯示 250
4.37 I2C介面數字電位器AD5242應用 254
4.38 SPI介面存儲器AT25F1024讀/寫與顯示 257
4.39 SPI介面溫度感測器TC72應用測試 264
4.40 溫度感測器LM35全量程應用測試 268
4.41 SHT75溫濕度感測器測試 272
4.42 直流電機正、反轉及PWM調速控制 278
4.43 正反轉可控的步進電機 281
4.44 ULN2803驅動點陣屏仿電梯數字滾動顯示 284
4.45 液晶顯示MPX4250壓力值 286
4.46 12864LCD顯示24C08保存的開機畫面 289
4.47 用M145026與M145027設計的無線收發系統 293
4.48 DS18B20溫度感測器測試 296
4.49 1-Wire式可定址開關DS2405應用測試 303
4.50 MMC存儲卡測試 307
第5章 綜合設計 316
5.1 帶日歷時鍾及溫度顯示的電子萬年歷 316
5.2 用8051+1601LCD設計的整型計算器 321
5.3 電子秤模擬設計 328
5.4 1602液晶屏顯示仿手機鍵盤按鍵字元 332
5.5 用24C04與1602液晶屏設計的簡易加密電子鎖 336
5.6 1-Wire匯流排器件ROM搜索與多點溫度監測 341
5.7 高模擬數碼管電子鍾設計 356
5.8 用DS1302與12864LCD設計的可調式中文電子日歷 360
5.9 用T6963C液晶屏設計的指針式電子鍾 366
5.10 T6963C液晶屏中文顯示溫度與時間 370
5.11 T6963C液晶屏曲線顯示ADC0832兩路A/D轉換結果 372
5.12 溫度控制直流電機轉速 374
5.13 用74LS595與74LS154設計的16×16點陣屏 377
5.14 用8255與74LS154設計的16×16點陣屏 379
5.15 紅外遙控收發模擬 381
5.16 GP2D12紅外測距感測器應用 388
5.17 三端可調正穩壓器LM317應用測試 395
5.18 數碼管顯示的K型熱電偶溫度計 399
5.19 交流電壓檢測與數字顯示模擬 403
5.20 用MCP3421與RTD-PT100設計的鉑電阻溫度計 407
5.21 可接收串口信息的帶中英文硬字型檔的80×16 LED點陣屏 414
5.22 模擬射擊訓練游戲 422
5.23 GPS模擬 427
5.24 溫室監控系統模擬 431
5.25 基於Modbus匯流排的數據採集與開關控制系統設計模擬 437

建議你到腳本之家網站去搜索一下看看有沒有這本書的電子檔。

❹ 低壓差線性穩壓器設計原理與應用的目錄

前言
第一章低壓差線性穩壓器概述
第一節低壓差線性穩壓器的術語
第二節線性穩壓器的原理及內部保護電路
一、線性穩壓器的原理
二、線性穩壓器的內部保護電路
第三節線性穩壓器典型產品的原理及典型應用
一、三端固定式穩壓器的原理及典型應用
二、三端可調式穩壓器的原理及典型應用
第四節低壓差線性穩壓器的原理
一、PNP型低壓差線性穩壓器(LDO)的原理
二、准低壓差線性穩壓器(QLDO)的原理
三、超低壓差線性穩壓器(VLDO)的原理
第五節低壓差線性穩壓器的主要特點及產品分類
一、低壓差線性穩壓器的主要特點
二、低壓差線性穩壓器的產品分類
三、低壓差線性穩壓器與其他穩壓器的性能比較
第六節低壓差線性穩壓器的應用領域及典型用法
一、低壓差線性穩壓器的應用領域
二、低壓差線性穩壓器的幾種典型用法
第七節低壓差線性穩壓器的選擇方法及使用注意事項
一、低壓差線性穩壓器的選擇方法
二、低壓差線性穩壓器的使用注意事項
第八節低壓差線性穩壓器典型產品的主要技術指標
第二章低壓差線性穩壓器設計軟體使用方法及設計實例
第一節低壓差線性穩壓器設計軟體的分類
第二節LDO-It設計軟體的工具欄及使用方法
一、LDO-It設計軟體的工具欄
二、LDO-It設計軟體的使用方法
第三節LDO-It設計軟體的應用實例
第四節利用WEBENCH軟體在線選擇低壓差線性穩壓器的方法
第三章低壓差線性穩壓器的原理與應用
第一節LM1117型准低壓差線性穩壓器
一、LN1117型准低壓差線性穩壓器的原理
二、LM1117型准低壓差線性穩壓器的應用
第二節SPX1117型准低壓差線性穩壓器
一、SPX1117型准低壓差線性穩壓器的原理
二、SPX1117型准低壓差線性穩壓器的應用
第三節LP2950/2951型低壓差線性穩壓器
一、LP2950/2951型低壓差線性穩壓器的原理
二、LP2951型低壓差線性穩壓器的應用
第四節LM2990/2991型負壓輸出式低壓差線性穩壓器
一、LM2990/2991型低壓差線性穩壓器的原理
二、LM2990型低壓差線性穩壓器的應用
三、LM2991型低壓差線性穩壓器的應用
第五節MIC68200型具有排序與跟蹤功能的低壓差線性穩壓器
一、MIC68200型低壓差線性穩壓器的原理
二、MIC68200型低壓差線性穩壓器的應用
第六節其他低壓差線性穩壓器的典型應用及使用技巧
一、LM2937型低壓差線性穩壓器的典型應用
二、MIC2941A型低壓差線性穩壓器的典型應用及使用技巧
三、NCV8675型低壓差線性穩壓器的典型應用
四、NCP1086型低壓差線性穩壓器的使用技巧
第四章超低壓差線性穩壓器的原理與應用
第一節TC10XX/20XX系列高精度超低壓差線性穩壓器
一、TC10XX/20XX系列超低壓差線性穩壓器的性能特點
二、TC10XX/20XX系列超低壓差線性穩壓器的原理與應用
三、使用注意事項
第二節MCP17XX/18XX系列高精度超低壓差線性穩壓器
一、MCP17XX/18XX系列超低壓差線性穩壓器的性能特點
二、MCP1700/1702超低壓差線性穩壓器的原理與應用
三、MCP1725/1726/1727/1827/1827S超低壓差線性穩壓器的原理與應用
第三節SP62XX系列超低壓差線性穩壓器
一、SP62XX系列超低壓差線性穩壓器的性能特點
二、SP6200/6201型超低壓差線性穩壓器的原理與應用
三、SP6203/6205型超低壓差線性穩壓器的原理與應用
第四節TPS73XX系列具有延時復位功能的超低壓差線性穩壓器
一、TPS73XX系列超低壓差線性穩壓器的性能特點
二、TPS73XX系列超低壓差線性穩壓器的原理
三、TPS73XX系列超低壓差線性穩壓器的典型應用
第五節MAX483X系列具有軟啟動功能的超低壓差線性穩壓器
一、MAX483XX系列超低壓差線性穩壓器的原理
二、MAX483XX系列超低壓差線性穩壓器的典型應用
第六節HT71XX/72XX系列高輸入電壓的超低壓差線性穩壓器
一、HT71XX/72XX系列超低壓差線性穩壓器的原理
二、HT71XX系列超低壓差線性穩壓器的應用技巧
第七節其他超低壓差線性穩壓器的原理與應用
一、MAX1735型超低壓差線性穩壓器的原理與應用
二、MAX5005型超低壓差線性穩壓器的原理與應用
三、LP38851型超低壓差線性穩壓器的應用
第五章多路輸出式超低壓差線性穩壓器的原理與應用
第一節雙路輸出式超低壓差線性穩壓器
一、TC1301/1302系列雙路輸出式VLDO的原理
二、TC1301/1302系列雙路輸出式VLDO的典型應用
第二節三路輸出式超低壓差線性穩壓器
一、MIC2215型三路輸出式VLDO的原理
二、MIC2215型三路輸出式VLDO的典型應用
第三節一次性可編程四路輸出式超低壓差線性穩壓器
一、AS1352型可編程四路輸出式VLDO的原理
二、AS1352型可編程四路輸出式VLDO的典型應用
第四節帶串列介面的可編程五路輸出式超低壓差線性穩壓器
一、MAX1798/1799型帶串列介面的五路輸出式VLDO的原理
二、MAX1798/1799在CDMA數字行動電話中的應用
三、MAX1799的評估板及專用工具軟體
第五節其他多路輸出式低壓差、超低壓差線性穩壓器的原理與應用
一、LM2935型雙路輸出式LDO的原理與應用
二、CAT6221型雙路輸出式VLDO的原理與應用
三、LP2966型雙路輸出式VLDO的原理與應用
四、R5320X系列三路輸出式VLDO的原理與應用
第六章大電流輸出式低壓差線性穩壓器的原理與應用
第一節1.5A低壓差、超低壓差線性穩壓器
一、MSK5101型1.5A大電流LDO的原理與應用
二、LTC3026型升壓變換式1.5A大電流VLDO的原理與應用
第二節3A低壓差、超低壓差線性穩壓器
一、LP38501-ADJ/38503-ADJ型3A大電流VLDO的原理與應用
二、SPX1582型3A大電流LDO的原理與應用
第三節適用於USB系統的3A低壓差線性穩壓器
一、MIC29311型3A大電流LDO的原理
二、MIC29311型3A大電流LDO的典型應用
第四節5A低壓差線性穩壓器
一、LMS1585A型5A大電流LD0的典型應用
二、DF1084型5A大電流LDO的典型應用
三、SPX1585型5A大電流LDO的典型應用
第五節7.5A/8A低壓差線性穩壓器
一、MIC2971X/2975X系列7.5A大電流LDO的原理與應用
二、SPX1584型8A大電流LDO的典型應用
第七章特種低壓差線性穩壓器的原理與應用
第一節高壓輸入式低壓差線性穩壓器
一、MAX8718/8719型28v高壓輸入式LDO的原理與應用
二、LT3012/3014型80V高壓輸入式LDO的原理與應用
第二節具有峰值電流輸出能力的低壓差線性穩壓器
一、MIC5216型具有峰值輸出能力的LD0的原理與應用
二、峰值電流輸出的應用實例
第三節單路輸出式低壓差和超低壓差線性穩壓控制器
一、LT1123型低壓差線性穩壓控制器的原理與應用
二、MIC5156型超低壓差線性穩壓控制器的原理與應用
第四節多路輸出式超低壓差線性穩壓控制器
一、MAX8563/8564型超低壓差線性穩壓控制器的原理
二、MAX8563/8564型超低壓差線性穩壓控制器的典型應用
第五節帶DC/DC變換器的復合式低壓差和超低壓差線性穩壓器
一、LTC3448型復合式低壓差線性穩壓器的原理與應用
二、TC1304型復合式超低壓差線性穩壓器的原理與應用
第六節帶超低壓差線性穩壓器的可編程鋰離子電池充電器
一、帶vIDO的可編程鋰離子電池充電器的原理
二、帶VLDO的可編程鋰離子電池充電器的典型應用
第七節LM2984/2984C型基於LDO的微處理器電源系統
一、LM2984/2984C型微處理器電源系統的原理
二、LM2984/2984C型微處理器電源系統的典型應用
第八章低壓差線性穩壓器的電路設計
第一節低壓差線性穩壓器的設計要點
一、低壓差線性穩壓器的基本類型
二、低壓差線性穩壓器電路設計要點
三、低壓差線性穩壓器的布局
四、低壓差線性穩壓器及散熱器的裝配技術
第二節低壓差線性穩壓器關鍵外圍元器件的選擇
一、輸入電容器、輸出電容器及旁路電容器的選擇
二、外部取樣電阻及電流檢測電阻的選擇
三、外部功率MOSFET的選擇
四、低壓差線性穩壓器封裝形式的選擇
第三節低壓差線性穩壓器常見故障分析
一、低壓差線性穩壓器常見故障一覽表
二、低壓差線性穩壓器常見故障分析
第四節提高低壓差線性穩壓器輸出電壓精度的方法
一、影響LDO輸出電壓精度的主要因素
二、提高LDO輸出電壓精度的方法
第五節減小浪涌電流及改善瞬態響應的方法
一、減小LDO浪涌電流的方法
二、改善LDO瞬態響應的方法
三、LDO瞬態響應的測試方法
第六節可編程低壓差線性穩壓器的電路設計
一、數字電位器的原理
二、可編程低壓差線性穩壓器的電路設計
第九章低壓差線性穩壓器的使用技巧
第一節提高低壓差線性穩壓器輸入電壓的方法
第二節利用外部雙極型晶體管擴展LDO負載電流的方法
一、MAX8863型超低壓差線性穩壓器的原理與應用
二、利用晶體管擴展MAX8863負載電流的方法
第三節利用外部場效應晶體管擴展LDO負載電流的方法
一、MIC5158型低壓差線性穩壓控制器的基本應用
二、利用場效應晶體管擴展MIC5158負載電流的方法
第四節低壓差線性穩壓器的並聯使用方法
第五節能從零伏起調的低壓差線性穩壓器應用電路
一、可調式低壓差線性穩壓器的典型應用電路
二、能實現低壓差線性穩壓器從零伏起調的兩種方法
第六節由低壓差線性穩壓器構成恆流源的方法
一、由低壓差線性穩壓器構成的簡易恆流源
二、由超低壓差線性穩壓控制器構成的恆流源
第十章低壓差線性穩壓器的應用實例
第一節低壓差線性穩壓器在計算機電源中的應用
一、對計算機電源的設計要求
二、5V/3.3V低壓差電源變換器的設計方案
三、獲取其他輸出電壓標稱值的簡便方法
四、多路輸出式低壓差線性穩壓器的設計方案
第二節低壓差線性穩壓器在攜帶型電子產品中的應用
一、對攜帶型電子產品電源的設計要求
二、減小低壓差線性穩壓器互相干擾的方法
第三節低壓差線性穩壓器在精密數控基準電壓源中的應用
一、MAX5130A的原理
二、精密數控基準電壓源的電路設計
第十一章低壓差線性穩壓器的散熱器設計
第一節散熱器的基本工作原理與安裝方法
一、LD0的工作壽命與最高結溫的關系
二、散熱器的基本工作原理
三、塑料封裝式LDO的散熱器安裝方法
第二節平板式散熱器的設計
一、平板式散熱器的設計方法
二、印製板式散熱器的設計方法
第三節成品散熱器的熱參數與熱參數計算
一、成品散熱器的熱參數
二、成品散熱器的熱參數計算
第四節大電流輸出式LDO的散熱器設計
一、大電流輸出式LDO的散熱曲線圖
二、大電流輸出式LDO的散熱器設計示例
第五節在風冷條件下的散熱器設計
一、在風冷條件下的散熱器選擇
二、散熱器的特性曲線
三、利用功率分配電阻來減小散熱器尺寸的方法
第六節不同封裝的LDO散熱器設計實例
第七節多片LDO並聯使用散熱器的設計實例
第八節設計散熱器的常用工具軟體
一、設計線性穩壓器散熱器的通用工具軟體
二、設計低壓差線性穩壓器散熱器的專用工具軟體
參考文獻

❺ 采樣電阻的應用場合有哪些該怎麼選型呢

采樣電阻基於磁場的檢測方法(以電流互感器和霍爾感測器為代表)采樣電阻具有良好的隔離和較低的功率損耗等優點,因此主要在驅動技術和大電流領域被電子工程師們選用,但它的缺點是體積較大,補償特性、線性以及溫度特性不理想。對於電流檢測的原理,目前主要有兩種的檢測:基於磁場的檢測方法和基於分流器的檢測方法。 由於小體積的高精度低阻值采樣電阻器的實用化,以及數據採集和處理器性能的大幅度提升,已經導致傳統的基於分流器的電流檢測方法的技術革新,並使新的應用成為可能。

然而,電路板上的取樣端子和采樣電阻組成了一個環狀結構,為了避免其間因電流產生的磁場和外圍磁場而形成的感應電壓,需要特別強調要使取樣的信號線形成的區域越小越好,最理想的是微帶線設計。采樣電阻又電流檢測電阻,也有人翻譯為電流感測電阻器,英語翻譯為current sensing resistor,采樣電阻阻值一般小於1歐姆,我見過的最小阻值是0.1毫歐,常用用的有0.025歐,0.028歐,0.05歐等。原理:將采樣電阻串入電路中,根據歐姆定律,當被測電流流過電阻時,電阻兩端的電壓與電流成正比,轉換為電壓型號進行測量。

低電感:在當今的很多應用中需要測量和控制高頻電流,分流器的寄生電感參數也得到了大幅改善。表面貼裝電阻器的特殊的低電感平面設計和合金材料的抗磁特性,金屬底板,以及四引線連接都有效降低了電阻器的寄生電感。
采樣電阻
采樣電阻熱電動勢,當溫度輕微升高或者降低時,在不同材料的接觸面上會產生熱電勢,這種效應對低阻值電阻的影響非常重要,盡管通常情況下熱電勢數值非常小,但微伏級的熱電勢能夠嚴重地影響測量結果。長期穩定性:對於任何感測器來說,長期穩定性都非常重要。甚至在使用了一些年後,人們都希望還能維持早期的精度。這就意味著電阻材料在壽命周期內一定要抗腐蝕,並且合金成分不能改變。端子連接:在低阻值電阻中,端子的阻值和溫度系數的影響往往是不能忽略的。在PCB layout也要注意采樣電阻的走線不能太長,太細。我在使用linear LTC4100做充電管理時,版PCB由於忽略了這一點,走線有點長,導致充電電流無法達到我的設定值,後來查了很久才發現是這個問題。

采樣電阻應用場合:電源管理(如電源監控)。開關電源SMPS(DC-DC, 充電管理,電源適配器)。如Linear的4100系列鋰電池充電電路,採用采樣電阻控制充電電流。

選型:常見生產廠家:Vishay, IRC,Ohmite, Bourns, 國產的主要有國巨等。PS:電子元件技術網的選型工具也比較好用。采樣電阻都是精密電阻,精度都在1%以內,更好要求時採用0.05%,甚至0.01%,功率有0.25W,0.5W,1W等。 阻值:和普通電阻一樣,標准阻值為非連續。表示方法:毫歐電阻可表示為: R001 = 0.001R。25毫歐電阻可表示為: R025 = 0.025R。100毫歐電阻可表示為: R100 = 0.1R。封裝:常見的封裝有1206/2010/2512。 溫度系數:是錳鎳銅合金電阻的典型溫度特性曲線,溫度系數TCR單位為ppm/K,在20或25℃ 時,TCR=[R(T)-R(T0)]/R(T0) ×(T-T0),對於溫度系數的定義,製造商標明溫度的上限是必要的,舉例說明在+20 -+60℃的溫度范圍內,測量系統經常選用TCR為幾百個ppm/K 的低阻值的厚膜電阻器,比如TCR 為200 ppm/K的電阻器的溫度特性,即使在如此小的范圍內,+50℃的溫度變化就足以導致阻值變化超過1%。

區塊鏈在實際生活中的應用有哪些

(1)趣鏈

趣鏈區塊鏈底層平台是趣鏈科技研發的國產自主可控區塊鏈底層平台,以高性能、高可用、可擴展、易運維、強隱私保護、混合型存儲等特性,配合數據共享與安全計算平台BitXMesh、區塊鏈開放服務平台飛洛FiLoop、供應鏈金融平台飛洛供應鏈FiloLink、存證服務平台飛洛印FiloInk、智能合約安全研發平台MeshSec,能更好的支撐企業、政府、產業聯盟等行業應用,促進多機構間價值高效流通。

(2)京東鏈

智臻鏈(JDChain)是京東自主研發的企業級區塊鏈底層框架,其誕生標志著京東全面開啟基於區塊鏈BaaS平台和「JDChain」底層鏈的「智臻生態」建設。京東智臻鏈服務平台依託多項優化實現的「一鍵部署」能力,做到了領先的秒級區塊鏈節點部署。此外,它還具備開放兼容多種底層、企業級動態組網等成熟應用的核心優勢。京東智臻鏈的適時推出,將有效提升各行業企業級區塊鏈應用的大規模落地,推動中國及全球信任經濟的建設。

(3)迅雷鏈

迅雷鏈(ThunderChain)是迅雷旗下網心科技自主研發的區塊鏈應用項目,具備百萬tps高並發、秒級確認能力。迅雷在研發高性能區塊鏈產品的基礎上,搭建了迅雷鏈開放平台,助力企業或個人開發者部署智能合約,輕松實現產品和服務上鏈,使得區塊鏈應用開發更為便捷。

(4)井通鏈

井通區塊鏈是井通科技具有自主知識產權的區塊鏈核心底層技術,它是基於區塊鏈技術所構建的有效去中心化互享生態的互聯網交易網路,採用分層設計(5層)的底層平台,以及多語言的智能合約體系,並已實現跨鏈功能。其具備私鏈、雲鏈、聯盟鏈等多層次、全方位、一站式服務能力,行業和區域生態的布局已初步成型。

除上述區塊鏈產品外,還有社區主導的LTC、Cosmos、IOTA、Nervos、NULS、MOAC等,企業主導的Ripple、Stellar、微眾BCOS、網路XuperChain、華為、平安、萬向、螞蟻金服、眾安、布比、矩陣元、秘猿、眾享比特、復雜美、上海鏈景等眾多區塊鏈產品。

(6)ltc1062應用擴展閱讀:

區塊鏈,遠不止是一項技術,其背後牽涉到的是「多方協作」的精神。在現代社會中,很多事情必須依靠大家通力合作才能達到1+1>2的效應,但在合作中需要盡力避免出現「信息不對稱」之類的問題。

因此聯盟成員之間共同記賬、共享數據,將一切公開化以消除「信息不對稱」,以保護每個人的利益,讓營商環境良性發展。誠實做事將獲得應有的收益,如果作弊自然就會路人皆知,千夫所指。技術就是幫助實現這種模式的基礎。這就是更重要的「區塊鏈思維」。

❼ ltc是什麼幣,有懂得嗎

❽ ltc流程是什麼

LTC 是華為的主流程,從線索發現開始,直至收回現金,端到端地拉通。

在不同的流程環節捲入不同的角色,並且和其他流程集成協作,在流程中把質量、運營、內控、授權、財經的要素放到流程中去,一張皮運作。LTC流程主要分三大段:管理線索、管理機會點、管理合同執行。

LTC即 L2C(Leads To Cash),是從線索到現金的企業運營管理思想,華為的LTC流程也深入的應用了這一思想,L2Cplat是這一思想的踐行者。

是以企業的營銷和研發兩大運營核心為主線,貫穿企業運營全部流程,深度融合了移動互聯、SaaS技術、大數據與企業運營智慧,旨在打造一個從市場、線索、銷售、研發、項目、交付、現金到服務的閉環平台型生態運營系統。

❾ 如何理解華為的LTC流程它僅適用於承包方嗎

有啊,你去應用寶上下載這樣的軟體吧。能根據軟體的種類進行搜索下載的。還有就是在這個上面下載的軟體版本是最新的,這樣就能在手機上正常使用。不會出現問題了。還是比較穩定的。將軟體下載到手機上就可以呢。不管是什麼型號的手機,只要是安卓的就能使用這個軟體。

熱點內容
現在還有幣圈嗎 發布:2025-06-23 20:57:01 瀏覽:551
幣圈第一新人 發布:2025-06-23 20:38:48 瀏覽:865
鐦數字貨幣詐騙 發布:2025-06-23 20:38:45 瀏覽:321
攀爬車trx4功能 發布:2025-06-23 20:27:32 瀏覽:420
幣響比特大亨怎麼賺錢 發布:2025-06-23 20:25:00 瀏覽:350
進軍區塊鏈百科 發布:2025-06-23 19:41:42 瀏覽:829
區塊鏈去中心化舉個例子 發布:2025-06-23 19:35:44 瀏覽:311
幣跟比特幣有固定的數量嗎 發布:2025-06-23 19:32:19 瀏覽:703
區塊鏈需要哪些構架 發布:2025-06-23 19:13:37 瀏覽:668
支付寶區塊鏈處方 發布:2025-06-23 19:12:18 瀏覽:995