創建eth交易源碼
① [以太坊源碼分析][p2p網路07]:同步區塊和交易
同步,也就是區塊鏈的數據的同步。這里分為兩種同步方式,一是本地區塊鏈與遠程節點的區塊鏈進行同步,二是將交易均勻的同步給相鄰的節點。
01.同步區塊鏈
02.同步交易
03.總結
ProtocolManager 協議管理中的 go pm.syncer() 協程。
先啟動了 fetcher ,輔助同步區塊用的。然後等待不同的事件觸發不同的同步方式。
同步的過程調用 pm.synchronise 方法來進行。
ProtocolManager 協議管理中的 go pm.txsyncLoop() 協程。
同步交易循環 txsyncLoop 分為三個部分的內容:
發送交易的函數。
挑選函數。
三個監聽協程的 case 。
② 以太坊用什麼代碼寫的
用Solidity語言代碼寫的。Solidity,文件擴展名以sol結尾。Solidity是和JavaScript相似的語言,用它來開發合約並編譯成以太坊虛擬機位元組代碼。
③ 如何創建和簽署以太坊交易
交易
區塊鏈交易的行為遵循不同的規則集
由於公共區塊鏈分布式和無需許可的性質,任何人都可以簽署交易並將其廣播到網路。
根據區塊鏈的不同,交易者將被收取一定的交易費用,交易費用取決於用戶的需求而不是交易中資產的價值。
區塊鏈交易無需任何中央機構的驗證。僅需使用與其區塊鏈相對應的數字簽名演算法(DSA)使用私鑰對其進行簽名。
一旦一筆交易被簽名,廣播到網路中並被挖掘到網路中成功的區塊中,就無法恢復交易。
以太坊交易的數據結構:交易0.1個ETH
{
'nonce':'0x00', // 十進制:0
'gasLimit': '0x5208', //十進制: 21000
'gasPrice': '0x3b9aca00', //十進制1,000,000,000
'to': '' ,//發送地址
'value': '0x16345785d8a0000',//100000000000000000 ,10^17
'data': '0x', // 空數據的十進製表示
'chainId': 1 // 區塊鏈網路ID
}這些數據與交易內容無關,與交易的執行方式有關,這是由於在以太坊中發送交易中,您必須定義一些其他參數來告訴礦工如何處理您的交易。交易數據結構有2個屬性設計"gas": "gasPrice","gasLimit"。
"gasPrice": 單位為Gwei, 為 1/1000個eth,表示交易費用
"gasLimit": 交易允許使用的最大gas費用。
這2個值通常由錢包提供商自動填寫。
除此之外還需要指定在哪個以太坊網路上執行交易(chainId): 1表示以太坊主網。
在開發時,通常會在本地以及測試網路上進行測試,通過測試網路發放的測試ETH進行交易以避免經濟損失。在測試完成後再進入主網交易。
另外,如果需要提交一些其它數據,可以用"data"和"nonce"作為事務的一部分附加。
A nonce(僅使用1次的數字)是以太坊網路用於跟蹤交易的數值,有助於避免網路中的雙重支出以及重放攻擊。
- const ethers = require('ethers')
- const signer = new ethers.Wallet('錢包地址')
- signer.signTransaction({
- 'nonce':'0x00', // 十進制:0
- 'gasLimit': '0x5208', //十進制: 21000
- 'gasPrice': '0x3b9aca00', //十進制1,000,000,000
- 'to': '' ,//發送地址
- 'value': '0x16345785d8a0000',//100000000000000000 ,10^17
- 'data': '0x', // 空數據的十進製表示
- 'chainId': 1 // 區塊鏈網路ID
- })
- .then(console.log)
以太坊交易結構
以太坊交易簽名
以太坊交易會涉及ECDSA演算法,以Javascript代碼為例,使用流行的ethers.js來調用ECDSA演算法進行交易簽名。
可以使用在線使用程序Composer將已簽名的交易傳遞到以太坊網路。這種做法被稱為」離線簽名「。離線簽名對於諸如狀態通道之類的應用程序特別有用,這些通道是跟蹤兩個帳戶之間余額的智能合約,並且在提交已簽名的交易後就可以轉移資金。離線簽名也是去中心化交易所(DEXes)中的一種常見做法。
也可以使用在線錢包通過以太坊賬戶創建簽名驗證和廣播。
使用Portis,您可以簽署交易以與加油站網路(GSN)進行交互。
鏈喬教育在線旗下學碩創新區塊鏈技術工作站是中國教育部學校規劃建設發展中心開展的「智慧學習工場2020-學碩創新工作站 」唯一獲準的「區塊鏈技術專業」試點工作站。專業站立足為學生提供多樣化成長路徑,推進專業學位研究生產學研結合培養模式改革,構建應用型、復合型人才培養體系。
④ 如何創建比特幣/加密貨幣交易平台
這個很復雜,需要政府部門的批文。現在國家層面已經禁止加密貨幣的交易了。
⑤ 【ETH錢包開發04】web3j轉賬ERC-20 Token
在上一篇文章中講解了ETH轉賬,這一篇講一下ERC-20 Token轉賬。
【ETH錢包開發03】web3j轉賬ETH
1、直接用web3j的API
2、java/Android調用合約的 transfer 方法
不管用哪種方式來轉賬,你都需要先寫一個solidity智能合約文件來創建ERC-20 Token,然後部署合約,最後才是通過客戶端來調用。
注意:erc-20 token轉賬和eth轉賬的區別如下:
1、erc-20 token創建交易對象用的是這個方法 createTransaction
2、erc-20 token需要構建 Function ,它其實對應的就是erc-20 token合約中的那些方法。它的第一個參數就是ERC20中那幾個方法的名稱,第二個參數的話就是對應合約方法中的參數,第三個參數是和第二個參數對應的,按照我那樣就行了。轉賬的話就是 transfer ,我們從合約的 transfer 可以看到第一個參數是收款地址,第二個參數是金額,所以 Function 這里對應起來就好。
這種方法不需要使用web3j封裝的方法,而是直接調用solidity合約的方法。
步驟
1、web3j載入一個已經部署的合約
2、驗證合約是否載入成功 isValid
3、如何載入合約成功,則調用合約的 transfer 方法
注意:
1、這里的 TokenERC20 是根據solidity智能合約生成的對應的Java類,用於java/Android和智能合約交互的,如果你對這里不太清楚,不妨看看我之前的一篇文章。
以太坊Web3j命令行生成Java版本的智能合約
2、如果載入合約失敗,可能的一個原因是合約對應的Java類中的 BINARY 的值不對,這個值是你部署合約成功之後的bytecode,你最好檢查對比一下。
我發送一筆交易,可以通過這個地址查詢
https://rinkeby.etherscan.io/tx/
⑥ 以太坊源碼分析--p2p節點發現
節點發現功能主要涉及 Server Table udp 這幾個數據結構,它們有獨自的事件響應循環,節點發現功能便是它們互相協作完成的。其中,每個以太坊客戶端啟動後都會在本地運行一個 Server ,並將網路拓撲中相鄰的節點視為 Node ,而 Table 是 Node 的容器, udp 則是負責維持底層的連接。下面重點描述它們中重要的欄位和事件循環處理的關鍵部分。
PrivateKey - 本節點的私鑰,用於與其他節點建立時的握手協商
Protocols - 支持的所有上層協議
StaticNodes - 預設的靜態 Peer ,節點啟動時會首先去向它們發起連接,建立鄰居關系
newTransport - 下層傳輸層實現,定義握手過程中的數據加密解密方式,默認的傳輸層實現是用 newRLPX() 創建的 rlpx ,這不是本文的重點
ntab - 典型實現是 Table ,所有 peer 以 Node 的形式存放在 Table
ourHandshake - 與其他節點建立連接時的握手信息,包含本地節點的版本號以及支持的上層協議
addpeer - 連接握手完成後,連接過程通過這個通道通知 Server
Server 的監聽循環,啟動底層監聽socket,當收到連接請求時,Accept後調用 setupConn() 開始連接建立過程
Server的主要事件處理和功能實現循環
Node 唯一表示網路上的一個節點
IP - IP地址
UDP/TCP - 連接使用的UDP/TCP埠號
ID - 以太坊網路中唯一標識一個節點,本質上是一個橢圓曲線公鑰(PublicKey),與 Server 的 PrivateKey 對應。一個節點的IP地址不一定是固定的,但ID是唯一的。
sha - 用於節點間的距離計算
Table 主要用來管理與本節點與其他節點的連接的建立更新刪除
bucket - 所有 peer 按與本節點的距離遠近放在不同的桶(bucket)中,詳見之後的 節點維護
refreshReq - 更新 Table 請求通道
Table 的主要事件循環,主要負責控制 refresh 和 revalidate 過程。
refresh.C - 定時(30s)啟動Peer刷新過程的定時器
refreshReq - 接收其他線程投遞到 Table 的 刷新Peer連接 的通知,當收到該通知時啟動更新,詳見之後的 更新鄰居關系
revalidate.C - 定時重新檢查以連接節點的有效性的定時器,詳見之後的 探活檢測
udp 負責節點間通信的底層消息控制,是 Table 運行的 Kademlia 協議的底層組件
conn - 底層監聽埠的連接
addpending - udp 用來接收 pending 的channel。使用場景為:當我們向其他節點發送數據包後(packet)後可能會期待收到它的回復,pending用來記錄一次這種還沒有到來的回復。舉個例子,當我們發送ping包時,總是期待對方回復pong包。這時就可以將構造一個pending結構,其中包含期待接收的pong包的信息以及對應的callback函數,將這個pengding投遞到udp的這個channel。 udp 在收到匹配的pong後,執行預設的callback。
gotreply - udp 用來接收其他節點回復的通道,配合上面的addpending,收到回復後,遍歷已有的pending鏈表,看是否有匹配的pending。
Table - 和 Server 中的ntab是同一個 Table
udp 的處理循環,負責控制消息的向上遞交和收發控制
udp 的底層接受數據包循環,負責接收其他節點的 packet
以太坊使用 Kademlia 分布式路由存儲協議來進行網路拓撲維護,了解該協議建議先閱讀 易懂分布式 。更權威的資料可以查看 wiki 。總的來說該協議:
源碼中由 Table 結構保存所有 bucket , bucket 結構如下
節點可以在 entries 和 replacements 互相轉化,一個 entries 節點如果 Validate 失敗,那麼它會被原本將一個原本在 replacements 數組的節點替換。
有效性檢測就是利用 ping 消息進行探活操作。 Table.loop() 啟動了一個定時器(0~10s),定期隨機選擇一個bucket,向其 entries 中末尾的節點發送 ping 消息,如果對方回應了 pong ,則探活成功。
Table.loop() 會定期(定時器超時)或不定期(收到refreshReq)地進行更新鄰居關系(發現新鄰居),兩者都調用 doRefresh() 方法,該方法對在網路上查找離自身和三個隨機節點最近的若干個節點。
Table 的 lookup() 方法用來實現節點查找目標節點,它的實現就是 Kademlia 協議,通過節點間的接力,一步一步接近目標。
當一個節點啟動後,它會首先向配置的靜態節點發起連接,發起連接的過程稱為 Dial ,源碼中通過創建 dialTask 跟蹤這個過程
dialTask表示一次向其他節點主動發起連接的任務
在 Server 啟動時,會調用 newDialState() 根據預配置的 StaticNodes 初始化一批 dialTask , 並在 Server.run() 方法中,啟動這些這些任務。
Dial 過程需要知道目標節點( dest )的IP地址,如果不知道的話,就要先使用 recolve() 解析出目標的IP地址,怎麼解析?就是先要用藉助 Kademlia 協議在網路中查找目標節點。
當得到目標節點的IP後,下一步便是建立連接,這是通過 dialTask.dial() 建立連接
連接建立的握手過程分為兩個階段,在在 SetupConn() 中實現
第一階段為 ECDH密鑰建立 :
第二階段為協議握手,互相交換支持的上層協議
如果兩次握手都通過,dialTask將向 Server 的 addpeer 通道發送 peer 的信息
⑦ ETH開發實踐——批量發送交易
在使用同一個地址連續發送交易時,每筆交易往往不可能立即到賬, 當前交易還未到賬的情況下,下一筆交易無論是通過 eth.getTransactionCount() 獲取nonce值來設置,還是由節點自動從區塊中查詢,都會獲得和前一筆交易同樣的nonce值,這時節點就會報錯 Error: replacement transaction underpriced
在構建一筆新的交易時,在交易數據結構中會產生一個nonce值, nonce是當前區塊鏈下,發送者(from地址)發出的交易(成功記錄進區塊的)總數, 再加上1。例如新構建一筆從A發往B的交易,A地址之前的交易次數為10,那麼這筆交易中的nonce則會設置成11, 節點驗證通過後則會放入交易池(txPool),並向其他節點廣播,該筆交易等待礦工將其打包進新的區塊。
那麼,如果在先構建並發送了一筆從地址A發出的,nonce為11的交易,在該交易未打包進區塊之前, 再次構建一筆從A發出的交易,並將它發送到節點,不管是先通過web3的eth.getTransactionCount(A)獲取到的過往的交易數量,還是由節點自行填寫nonce, 後面的這筆交易的nonce同樣是11, 此時就出現了問題:
實際場景中,會有批量從一個地址發送交易的需求,首先這些操作可能也應該是並行的,我們不會等待一筆交易成功寫入區塊後再發起第二筆交易,那麼此時有什麼好的解決辦法呢?先來看看geth節點中交易池對交易的處理流程
如之前所說,構建一筆交易時如果不手動設置nonce值,geth節點會默認計算發起地址此前最大nonce數(寫入區塊的才算數),然後將其加上1, 然後將這筆交易放入節點交易池中的pending隊列,等到節點將其打包進區塊。
構建交易時,nonce值是可以手動設置的,如果當前的nonce本應該設置成11, 但是我手動設置成了13, 在節點收到這筆交易時, 發現pending隊列中並沒有改地址下nonce為11及12的交易, 就會將這筆nonce為13的交易放入交易池的queued隊列中。只有當前面的nonce補齊(nonce為11及12的交易被發現並放入pending隊列)之後,才會將它放入pending隊列中等待打包。
我們把pending隊列中的交易視為可執行的,因為它們可能被礦工打包進最新的區塊。 而queue隊列因為前面的nonce存在缺失,暫時無法被礦工打包,稱為不可執行交易。
那麼實際開發中,批量從一個地址發送交易時,應該怎麼辦呢?
方案一:那麼在批量從一個地址發送交易時, 可以持久化一個本地的nonce,構建交易時用本地的nonce去累加,逐一填充到後面的交易。(要注意本地的nonce可能會出現偏差,可能需要定期從區塊中重新獲取nonce,更新至本地)。這個方法也有一定的局限性,適合內部地址(即只有這個服務會使用該地址發送交易)。
說到這里還有個坑,許多人認為通過 eth.getTransactionCount(address, "pending") ,第二個參數為 pending , 就能獲得包含本地交易池pending隊列的nonce值,但是實際情況並不是這樣, 這里的 pending 只包含待放入打包區塊的交易, 假設已寫入交易區塊的數量為20, 又發送了nonce為21,22,23的交易, 通過上面方法取得nonce可能是21(前面的21,22,23均未放入待打包區塊), 也可能是22(前面的21放入待打包區塊了,但是22,23還未放入)。
方案二是每次構建交易時,從geth節點的pending隊列取到最後一筆可執行交易的nonce, 在此基礎上加1,再發送給節點。可以通過 txpool.content 或 txpool.inspect 來獲得交易池列表,裡面可以看到pending及queue的交易列表。
啟動節點時,是可以設置交易池中的每個地址的pending隊列的容量上限,queue隊列的上容量上限, 以及整個交易池的pending隊列和queue隊列的容量上限。所以高並發的批量交易中,需要增加節點的交易池容量。
當然,除了擴大交易池,控制發送頻率,更要設置合理的交易手續費,eth上交易寫入區塊的速度取決於手續費及eth網路的擁堵狀況,發送每筆交易時,設置合理的礦工費用,避免大量的交易積壓在交易池。
⑧ 如何批量創建生成ETH錢包地址助記詞私鑰
批量生成ETH錢包地址
1,打開連接工具地址: https://www.ztpay.org/tool.html
2,找到批量創建地址;如下圖
4,填入想要生成的錢包數量;
5,然後點擊「生成地址」;
生成錢包地址之後,根據自己需要進行選擇即可。
⑨ 我想用JavaScript寫一個ETH私鑰生成器,有沒有大神提供一下思路
作為業內人士,不鼓勵或支持編寫任何涉沒兄及加密貨幣的應用程序,因為這涉及到用戶隱私和資金安全等問題。此外,ETH私鑰生成器是一個非常敏感的應用程序,需要非常謹慎和謹慎地處理。如果您對加密貨幣的技術不熟悉或不了解ETH私鑰的生成和管理方式,請不要輕易嘗試編寫此類應用程序。
如果您仍然想編寫ETH私鑰生成器,建議您遵循以下步驟:
1. 確定您的技術能力和知識枯銷襲水平,了解JavaScript語言和ETH私鑰的生成演算法。
2. 學習使用JavaScript生成隨機數和哈希函數,以生成隨機的私鑰。注意要使用可靠的隨機數生成器和安全的斗散哈希演算法。
3. 學習使用ETH錢包庫,如web3.js或ethers.js,來管理私鑰和與以太坊網路的交互。這些庫提供了豐富的API和工具,可以輕松地處理ETH私鑰和交易等問題。
4.在研究ETH私鑰的安全和保護問題,如如何存儲和備份私鑰,如何加密和解密私鑰等。確保您的代碼和用戶數據得到充分的保護。
最後,我想再次強調,編寫ETH私鑰生成器是一個非常復雜和敏感的任務,需要非常謹慎和謹慎地處理。如果您不熟悉加密貨幣的技術或沒有足夠的經驗和知識,建議您不要嘗試編寫此類應用程序。同時,使用加密貨幣時請務必注意風險和安全問題,採取必要的措施來保護您的私鑰和資產。
⑩ 【ETH錢包開發03】web3j轉賬ETH
在之前的文章中,講解了創建、導出、導入錢包。
【ETH錢包開發01】創建、導出錢包
【ETH錢包開發02】導入錢包
本文主要講解以太坊轉賬相關的一些知識。交易分為ETH轉賬和ERC-20 Token轉賬,本篇先講一下ETH轉賬。
1、解鎖賬戶發起交易。錢包keyStore文件保存在geth節點上,用戶發起交易需要解鎖賬戶,適用於中心化的交易所。
2、錢包文件離線簽名發起交易。錢包keyStore文件保存在本地,用戶使用密碼+keystore的方式做離線交易簽名來發起交易,適用於dapp,比如錢包。
本文主要講一下第二種方式,也就是錢包離線簽名轉賬的方式。
交易流程
1、通過keystore載入轉賬所需的憑證Credentials
2、創建一筆交易RawTransaction
3、使用Credentials對象對交易簽名
4、發起交易
注意以下幾點:
1、Credentials
這里,我是通過獲取私鑰的方式來載入 Credentials
還有另外一種方式,通過密碼+錢包文件keystore方式來載入 Credentials
2、nonce
nonce是指發起交易的賬戶下的交易筆數,每一個賬戶nonce都是從0開始,當nonce為0的交易處理完之後,才會處理nonce為1的交易,並依次加1的交易才會被處理。
可以通過 eth_gettransactioncount 獲取nonce
3、gasPrice和gasLimit
交易手續費由gasPrice 和gasLimit來決定,實際花費的交易手續費是 gasUsed * gasPrice 。所有這兩個值你可以自定義,也可以使用系統參數獲取當前兩個值
關於 gas ,你可以參考我之前的一篇文章。
以太坊(ETH)GAS詳解
gasPrice和gasLimit影響的是轉賬的速度,如果gas過低,礦工會最後才打包你的交易。在app中,通常給定一個默認值,並且允許用戶自己選擇手續費。
如果不需要自定義的話,還有一種方式來獲取。獲取以太坊網路最新一筆交易的 gasPrice ,轉賬的話, gasLimit 一般設置為21000就可以了。
Web3j還提供另外一種簡單的方式來轉賬以太幣,這種方式的好處是不需要管理nonce,不需要設置gasPrice和gasLimit,會自動獲取最新一筆交易的gasPrice,gasLimit 為21000(轉賬一般設置成這個值就夠用了)。
這個問題,我想是很多朋友所關心的吧。但是到目前為止,我還沒有看到有講解這方面的博客。
之前問過一些朋友,他們說可以通過區塊號、區塊哈希來判斷,也可以通過Receipt日誌來判斷。但是經過我的一番嘗試,只有 BlockHash 是可行的,在web3j中根據 blocknumber 和 transactionReceipt 都會報空指針異常。
原因大致是這樣的:在發起一筆交易之後,會返回 txHash ,然後我們可以根據這個 txHash 去查詢這筆交易相關的信息。但是剛發起交易的時候,由於手續費問題或者乙太網絡擁堵問題,會導致你的這筆交易還沒有被礦工打包進區塊,因此一開始是查不到的,通常需要幾十秒甚至更長的時間才能獲取到結果。我目前的解決方案是輪詢的去刷 BlockHash ,一開始的時候 BlockHash 的值為0x00000000000,等到打包成功的時候就不再是0了。
這里我使用的是rxjava的方式去輪詢刷的,5s刷新一次。
正常情況下,幾十秒內就可以獲取到區塊信息了。
區塊確認數=當前區塊高度-交易被打包時的區塊高度。