ltc2052hv放大器
① LTC1043到底是什麼東西什麼開關電容,開關電容濾波器1043的工作原理是什麼懂的
我看過英文的DATA SHEET,也仔細看過應用線路,實際上就是電容。不過這個電容有以下特殊之處。
1、電容數量有幾個,容值為1uF。
2、每個電容的兩端接可以接在電路中去,也可以斷開不連接到應用線路中。
3、斷開連接可以受內部振盪時鍾或外部時鍾信號進行頻率控制。
4、帶有120dB共模抑制比。
5、由於有自動開關,開關頻率可受控,開關能有斷續比脈沖,並且能充電平衡功效,因此用作采樣采樣保持、壓控振盪、V-F電壓頻率變換、F-V頻率電壓變換比普通電容有更好的一致性、可控性,防共模干擾能力更強。
凡是1uF無極性電容能做的事情,它都做,例如在低頻時候可以做的微分積分反相變換電路,不過他共有幾個,因此你只用其中的一個電容,或只用於普通的耦合濾波電路,那肯定是高射炮打蚊子。它主要用於精密儀表高精度放大,還有頻率-電壓相互轉換電路,還有需要輸入多個不同輸入端,或者做成4個不同放大倍數的放大器時,就不需要通過單片機,再加模擬開關來完成。
在PROTEUS以及其他模擬電路中,相當於單片機的幾個輸出端、加多個模擬開關、幾個1微法無極性電容。單一的分離元器件是不能同他相提並論的。
② LTC1064詳細的中文資料
不知道你要是什麼樣的資料,看看這個吧
特點
8階濾波器,在一個14引腳封裝
140khz最高拐角頻率
無外部元件
50:1和100:1小時截止頻率比
80 µ車牌總寬頻雜訊
0.03 % thd或更好
從運作± 2.37v ± 8v的電源
描述
該護理® 1064-2是一個單片8秩序巴特沃斯低通濾波器,它提供了最大限度通單位。衰減斜率是-48db/octave和最大衰減超過80db 。外部ttl或cmos時鍾節目濾波器的截止頻率。時鍾到截止頻率的比例是100:1 (腳10 v型)或50:1 ( 10腳在五+ ) 。最高截止頻率140khz 。無需外部組件的需求。
該ltc1064 -2特點寬頻低雜訊和低諧波失真,即使輸入電壓高達3vrms 。事實上ltc1064 -2整體表現競爭對手相當於多重運算放大器rc有源體會。該ltc1064 - 2是採用14引腳dip或16引腳表面貼裝西南包裝。該ltc1064 -2是用編造護理的強化模擬cmos硅柵工藝。
該ltc1064 - 2腳兼容ltc1064 - 1 。
③ ltc1051斬波運放相關問題
Uo=Vi(1+R1/R2)(1+R2/R1)
=Ⅴi+ViR1/R2+Ⅴi(R2/R1)+Ⅴi
=Vi(0.00499+200.4+1)
=201.4Ⅴ
這個電路就是兩級同相比例放大器,其抗漂移穩定性能均一般正常。
要100倍放大倍數也很方便:R2降到51K歐,R1為510歐。
④ 運放失調電壓的測量原理
對雜訊增益作斬波以實時測量運放失調電壓
技術分類: 測試與測量 模擬設計 | 2008-06-30
Glen Brisebois, Linear Technology, San Jose, CA
運算放大器的一個最重要的指標就是它的輸入失調電壓。對很多運放可以忽略這個電壓,但問題是:失調電壓會隨著溫度、閃爍雜訊和長期漂移而改變。斬波與自動調零技術已經出現多年,它們能夠將輸入失調電壓減小到微伏以下。這種技術的精度非常好,甚至會讓其它微小影響占據誤差的主要地位,如銅焊盤的熱偶節點,直到它們也被一一克服。本設計實例介紹了一種新型斬波技術。「雜訊增益的斬波」是一種實時測量失調電壓的簡單方法,這樣就可以將其減除,從而提高DC精度。
圖1是一個搭成反相10倍增益結構的LTC6240HV運放,也包括了它的一些相應規格。所有輸入失調電壓都在輸出端表示為11倍增益(稱為「雜訊增益」)的輸出誤差。任何下游電路或輸出電壓的觀測者都無法將所需輸出信號與輸出誤差區別開來。
圖2表示了雜訊增益的斬波方法。S1用於附帶分流電阻R3的進出切換,從而在不影響信號增益或帶寬時改變雜訊增益。通常情況下帶寬會有些下降,但無論開關處於閉合或打開狀態,帶寬極限都由C1決定。現在向輸出端施加一個小方波,其幅度等於現有的DC誤差。可以用一個普通的斬波器解調出誤差,也可以在一個現代的ADC系統中用軟體減掉它。
圖2電路更像一個輸入同時連接和斷接的簡單求和放大器。這個意義上,它更像一個真正的斬波放大器。但此時,被斬波的輸入電壓是放大器的失調電壓,而不是輸入信號。如果沒有必要為什麼要斷開輸入信號呢?另外也不存在連續斬波的要求,只需在有失調測量需求時用它即可。
注意,雖然本設計實例給出了易於理解的反相例子,但S1使用一種好的模擬開
⑤ 三洋ltc32ca-50五分鍾自動關機,再開10秒關機5v12v24v電壓偏高,
三洋電視,不定期自動關機,關機後再開機又工作一段時間,又自動關機。
電路特點分析:
(1)開關電源電路採用自激式並聯輸出型電路,並通過開關變壓器主機芯與交流輸入電路相隔離,即“冷機芯”電路;
(2)取樣電路採用由取樣繞組和整流濾波組成的間接取樣方式:
(3)由V733可控硅、V734穩壓管等構成的過壓保護電路,採用開關管基極與啟動電阻短地的方式,使開關管停止工作。主機電源開,關機受微處理器M50436-560SP⑧腳與介面驅動電路V1007控制,控制方式為繼電器通/斷交流電源輸入式。
檢修技法:
(1)監視過壓保護電路可控硅V733控制柵極電壓,判斷保護電路是否動作。發現自動關機時V733
G極電壓變為0.7V,說明過壓保護電路已動作,故障的直接原因是過壓保護電路起控所致;
(2)採用斷開行負載、接假負載的方法試機。此時,當出現自動關機故障時,主電源115V
升高為125V左右,當超過125V以上時,V733可控硅觸發導通,燈滅,說明故障出在開關電源電路中;
(3)通過檢測取樣穩壓控制電路工作點的方法來發現異常部位,並發現當表筆觸到C745
取樣電壓濾波電容時,突然自動關機,說明取樣電壓有異常。表筆觸到C745,相當於在取樣電路R745、R746、R747上並聯表內阻,使提供給誤差放大管基極的取樣電流減少,使V745
c
極電壓減小,減少了流向電容C742的電流,使V725、V726導通電流減少,開關管V720截止時刻滯後,導通時間增加,從而使儲能增加,輸出電壓上升,造成保護電路動作故障。
用萬用表檢查,發現C745兩端電壓比正常值21V偏低且不穩,表明C745有漏電現象,但仍有充放電作用。由於萬用表很難准確判斷電容好壞(對電容性能不良更無能為力).因此,採用同規格電容並聯法試機。把一隻47uF電容並聯到C745上時故障消失,更換C745後故障排除。
故障原因分析(三洋電視維修):故障系因C745取樣電容漏電變值,使取樣電壓下降,流入V745誤差放
大器基極偏流減小→V745
c極電壓↓→V725
b極電壓↓→V725
c極電壓↑→V726
b極電壓
↑→V726
e極電流↓→V720
b極注入電流↓→增加V720的飽和導通時間→l15V輸出電壓
上升→過壓保護電路V733觸發導通→V720
b極短地而停止工作所致。
⑥ LT1541和LTC1541是同一個晶元嗎
概覽
封裝
訂購信息
設計工具
演示電路板
電路
通知
技術支持
LTC1541 - 微功率運算放大器、比較器和基準
特點
靜態電流:5µA (典型值)
軌至軌輸出擺幅
低的運放失調電壓:700µV (最大值)
基準輸出可驅動 0.01µF 電容器
內部 1.2V ±0.4% 基準輸出 (LTC1541)
低輸入偏置電流:1nA (最大值)
基準輸出能提供高達 2mA 電流
內部 ±2.25mV 比較器遲滯
比較器和運放輸入范圍包括地電位
運放能夠驅動高達 1000pF 負載
具有穩定的單位增益和 12kHz 帶寬
2.5V 至 12.6V 電源電壓范圍
MAX951 / MAX953 的引腳兼容型升級產品
採用 3mm x 3mm x 0.8mm DFN 封裝
典型應用
LTC1541 Typical Application
LTC1541 Typical Application
描述
LTC®1541 / LTC1542 將一個微功率放大器、比較器和帶隙基準 (LTC1541) 整合在一個 8 引腳封裝中。該器件依靠 2.5V 至 12.6V 單電源或 ±1.25V 至 ±6.3V 雙電源供電運作,並具有一個 5µA 的典型電源電流。運放和比較器均具有一個從負電源擴展至正電源之 1.3V 以內的共模輸入電壓范圍。運放輸出級具有軌至軌輸出擺幅。比較器的負輸入在內部連接至基準輸出 (LTC1541)。
基準輸出電壓在擴展溫度范圍內為 1.2V ±1%。輸出能夠驅動一個高達 0.01µF 的旁路電容器,並不會產生任何振盪。另外,它還能供應高達 2mA 和吸收高達 20µA 的電流。
運放在內部進行補償,以實現穩定的單位增益以及在 12kHz 的典型 GBW 和 8V/ms 的擺率。比較器具有 ±2.25mV 的內部遲滯以確保干凈的輸出開關切換,即使在採用緩慢移動的輸入信號時也不例外。
LTC1541 / LTC1542 採用 MSOP 和 SO-8 封裝。對於空間受限的應用,LTC1541 / LTC1542 可提供 3mm x 3mm 扁平 (僅高 0.8mm) 雙側引腳細間距無引線封裝 (DFN)。
應用
電池或太陽能供電型系統
汽車無鑰匙進入
低頻、局域報警 / 探測器
用於遙控的紅外接收器
煙霧探測器和安全感測器
GSM 攜帶型電話
⑦ 電子元件LTMR是什麼
是lintear公司的一款放大器,型號是LTC2051,對你有幫助請採納。
LTC®2051/LTC2052 是雙通道/四通道零漂移運算放大器,採用 MS8 和 SO-8/GN16以及 S14 封裝。對於空間受限型應用,LTC2051 可提供一種 3mm x 3mm x 0.8mm 雙側引腳細間距無引線封裝 (DFN)。它們採用單 2.7V 工作電源,並支持 ±5V 應用。電流消耗為每個運算放大器 750μA。
LTC2051/LTC2052 雖然外形尺寸小巧,但 DC 性能卻絲毫不打折扣。典型輸入失調電壓和失調漂移分別為 0.5μV 和10nV/℃.。利用高於 130dB 的電源抑制比 (PSRR) 和共模抑制比 (CMRR),對幾乎為零的 DC 偏移和漂移提供了支持。
輸入共模電壓范圍從負電源至高達正電源的 1V (典型值) 以內。LTC2051/LTC2052 還具有一個增強型輸出級,該輸出級能夠把低至 2kΩ 的負載驅動至正負兩個電源軌。開環增益通常為 140dB。另外,LTC2051/LTC2052 還擁有一個 1.5μVP-P 的 DC 至 10Hz 雜訊和一個 3MHz 的增益帶寬乘積。
專業查詢晶元元件代碼,經銷TI,AD,MAX,ST等原裝晶元IC
⑧ 在protel dxp中雙路運放(三個介面的那種)的元件名是什麼
是不是找集成運放晶元,一般用LM324就可以了,價格也便宜。LM324內有4個運算放大器.
protel中 點擊search 搜索欄內輸入 *LM324* 搜索即可找到。*號是擴大搜索范圍,否則很難找到完全匹配的元件名
集成運算放大器
通用運放(130種)
ALD1704X
ALD1722X
ALD2704X
ALD2722X
ALD4704X
APA4558
APC558
BA10358X
BA14741X
BA4558X
ELM842A
ELM854xA
FAN4272 G1211
G1212
HA17301P
HA17324X
HA17358X
HA17741X
HA17747X
KA1458X
KA201A
KA224
KA248
KA258
KA2902 KA2904
KA301A
KA324
KA3303
KA3403
KA348
KA358
KA4558X
KA5532
KA741X
KF347X
KF351
KF353 KF442X
KIA324X
KIA358X
LM258
LM2904X
LM358
LM6142
LM6144
LMH6645
LMH6646
LMH6647
LS404
MAX4352 MAX4353
MAX4354
MAX4452
MAX4453
MAX4454
MB3614
MB3615
MB47358
MC3405
MM3002
NCV2904
NE5230
NJM12902 NJM12904
NJM13403
NJM13404
NJM14558
NJM1458
NJM2058
NJM2059
NJM2060
NJM2100
NJM2107
NJM2112
NJM2115
NJM2119 NJM2120
NJM2123
NJM2125
NJM2143
NJM2172
NJM2902
NJM324
NJM3403A
NJM3404A
NJM353
NJM4558
NJM4559
NJM4560 NJM4562
NJM4565
NJM4580
NJM4741
NJM741
OP02
OP04
OP09
OP11
OP14
SA5230
TA74358P
TA75060P TA75061P
TA75062X
TA75064X
TA75070P
TA75071X
TA75072X
TA75074X
TA75254P
TA75324X
TA75358X
TA75458X
TA75557X
TA75558X TA75559X
TA75902X
TA75S01F
TA75W01FU
TLC252X
TLC254X
TS274X
TS902
TS912
TS914
TSH24
UA741
UTCM2100
寬頻帶運放(21種)
AD840
AD841
BB3554
MC33071X
MC33072X MC33074X
MC34071X
MC34072X
MC34074X
MC4558 MX3554
NJM2116
NJM2136
TS612
TS613 TS634
TSH110
TSH111
TSH112
TSH113 TSH114
精密運放(含低漂移、零漂移、低偏流、低偏壓、低失調運放和儀器運放)(75種)
AD704
AD705
AD706
AD707
AD708
AD824
AD845
AD846 ALD1702X
ALD1703
ALD1712X
ALD2702X
ALD2711X
ALD4702X
LMV301
LT1006 LT1013
LT1014
LT1152
LT1250
LT1884
LT1885
LTC1051
LTC1053 LTC2050X
LTC2051
LTC2052
MAX400
MAX480
MM1278
MM6558
MXL1001 MXL1013
MXL1014
MXL1178
MXL1179
NJM062
NJM064
NJM072X
NJM074 NJM082X
NJM084
NJM2097
NJMOP-07
NJU7042
NJU7051
NJU7052
NJU7054 NJU7061
NJU7062
NJU7064
OP07-1
OP07-2
OP07C
OP-10
OP-12 OP-15
OP-16
OP-17
OP177
OP193
OP200
OP293
OP493 OP-80
OP90
OP-90
OP-97
PM-1012
PM-155A
PM-156A
PM-157A TS27M4X
TS512X
UA748
低電壓運放(63種)
AD8517
AD8527
AD8631
AD8632
CMC7101A
CMV7101
CMV7106
DS4802
FAN4113
FAN4114
LMV921
LMV922
LMV924 LMV981
LT1884
LT1885
MAX4240
MAX4241
MAX4242
MAX4243
MAX4244
MAX4289
MAX4291
MAX4292
MAX4294
MAX4464 MAX4470
MAX4471
MAX4472
MAX4474
MC33501
MC33502
MC33503
MIC7111
NCS2001
NCS7101
NE5230
NE5234
NJU7001 NJU7002
NJU7004
NJU7007
NJU7008
NJU7017
NJU7018
NJU7019
NJU7021
NJU7022
NJU7024
NJU7031
NJU7032
NJU7034 SA5230
SA5234
TS1851
TS1852
TS1854
TS1871
TS1872
TS1874
UTCLMV358
XC221A1100MR
XC221A1200MR
比較器(7種)
ALD2301X ALD2302X ALD2303X ALD4302X MB4204 SA58603 TA75W393FU
低功率微功耗運放(90種)
ALD1701X
ALD1706X
ALD1721X
ALD1726X
ALD2701X
ALD2706X
ALD2721X
ALD2726X
ALD4701X ALD4706X
CMC7106
CMV1010
CMV1016
CMV1020
CMV1026
CMV1030
CMV1036
ELM832A LM124
LM158
LM158x
LM224-1
LM224-2
LM258-1
LM258-2
LM258x
LM2902 LM2902X
LM2904-1
LM2904-2
LM2904X
LM324X-1
LM324X-2
LM358
LM358x-1
LM358x-2 LMC6442
LMH6642
LMH6643
LMH6644
MAX4330
MAX4331
MAX4332
MAX4333
MAX4334 MC3303
MC33171
MC33172
MC3403
MC3503
MC35171
MC35172
MCP606
MCP607 MCP608
MCP609
MIC861
MIC910
MIC911
MIC912
MIC913
MIC914
MIC915 MIC916
MIC918
MIC919
NCV2902
NCV2904
NE532
NJM022
NJM022B
NJM2130 NJU7011
NJU7012
NJU7013
NJU7014
NJU7015
NJU7016
NJU7091A
NJU7092A
NJU7093A NJU7094
NJU7095
NJU7096
SA532
SA534
SE532
TS931
TS932
TS934
低雜訊運放(45種)
HA-5127X
HA-5137
HA-5137A
HA-5147
HS-5104ARH
HS-5104ARH-T
KIA4558X
KIA4559X
LM381X LM387X
LM833
LMH6654
LMH6655
LT1792
LT1793
MC33077
MC33078
MC33079-1 MC33079-2
MXL1007
NE5532X-1
NE5532X-2
NE5534X-1
NE5534X-2
NJM2041
NJM2043
NJM2068 NJM2114
NJM2122
NJM5532
NJM5534
OP113
OP213
OP27
OP37
OP413 RF2304
RF2314
SA5534X
SE5532X
SE5534X-1
SE5534X-2
TC7652
TS522
TS524
高速運放(29種)
AD711
AD712
AD713
AD843
AD844
AD847 AD848
AD849
ALD1502
ALD2502
ALD4501
BA15218X BA15532X
BA4510X
BA4560X
FAN4230
NJM2121
NJM2710 NJM2716
NJM318
TL3X071X
TL3X072X
TL3X074X
TLV2780X TLV2781X
TLV2782X
TLV2783X
TLV2784X
TLV2785X
低失真運放(5種)
INA103 INA163 LT1115 LT1806 LT1807
高輸出電流高驅動能力運放(12種)
AD842
LMH6672
MAX4230 MAX4231
MAX4232
MAX4233 MAX4234
MC33076
NJM3414A NJM4556A
OP176
OP279
可編程運放(5種)
LC7972X LT1167 TLC251X TS271X TS652
其他特殊運放(18種)
BA10324X
BA3131FS
CA3160X
ICL7650X
ICL7652X ICL7653X
LM10
LM201A
LM301A
LT1794 MAX420
MAX421
MAX422
MAX423
MM1462X NJM13600
NJM13700
NJM2140
⑨ 交流220V電流檢測電路,電流只有十幾個毫安,怎麼搭建電路
10幾毫安已經很大了。這種情況用互感器,體積大、一致性差。建議你採用雙向的光耦來檢測。推薦TLP620。
⑩ 如何提高差分放大器的共模抑制比這個方法要掌握
在諸多應用領域中,採用模擬技術時都需要使用差分放大器電路。例如測量技術,根據其應用的不同,可能需要極高的測量精度。為了達到這一精度,盡可能減少典型誤差源(例如失調和增益誤差,以及雜訊、容差和漂移)至關重要。為此,需要使用高精度運算放大器。放大器電路的外部元件選擇也同等重要,尤其是電阻,它們應該具有匹配的比值,而不能任意選擇。
圖 1. 傳統的差分放大器電路。
理想情況下,差分放大器電路中的電阻應仔細選擇,其比值應相同 (R2/R1 = R4/R3)。這些比值有任何偏差都將導致不良的共模誤差。差分放大器抑制這種共模誤差的能力以共模抑制比(CMRR) 來表示。它表示輸出電壓如何隨相同的輸入電壓(共模電壓)而變化。
在最佳情況下,輸出電壓不應該改變,因為它只取決於兩個輸入電壓之間的差值(最大 CMRR);但是,實際使用中情況會有所不同。CMRR 是差分放大器電路的重要特性,通常以 dB 來表示。
對於圖 1 所示的差分放大器電路,CMRR 取決於放大器本身以及外部連接的電阻。對於後者,取決於電阻的 CMRR 在本文下述部分以下標"R"表示,並利用下式計算:
例如,在放大器電路中,所需增益 G = 1 且使用容差為 1%、匹配精度為 2% 的電阻產生的共模抑制比為
在 34 dB時,CMRRR相對較低。在這種情況下,即使放大器具有非常好的 CMRR,也無法實現高精度,因為鏈路的精度總是取決於其精度最差的環節。因此,對於精密的測量電路而言,必須非常精確地選擇電阻。
實際使用中傳統電阻的阻值並不恆定。它們會受機械負載和溫度的影響。根據需求的不同,可以使用具有不同容差的電阻或匹配電阻對(或網路),其大部分使用薄膜技術製造並具有精確的比值穩定性。利用這些匹配的電阻網路(如LT5400 四通道匹配電阻網路),可以大幅提高放大器電路的整體 CMRR。 LT5400 電阻網路在整個溫度范圍內具有出色的匹配性,結合差分放大器電路使用則匹配性更佳,因而可確保 CMRR 比分立電阻提高兩倍。
圖 2. 帶有 LT5400 的差分放大器電路。
LT5400 提供 0.005% 的匹配精度,從而使 CMRRR達到 86 dB。然而,放大器電路的總共模抑制比 (CMRRTotal) 由電阻 CMRR 和運算放大器共模抑制比 CMRROP 的組合構成。對於差分放大器,可利用公式 3 計算:
例如, LT1468提供的 CMRROP 典型值為 112 dB,採用 LT5400 的增益為 G = 1,其 CMRRTotal的值為 85.6 dB。
或者,可以使用集成式差分放大器,如LTC6363。這種放大器在單晶元中內置放大器和最佳匹配電阻。它幾乎消除了上述所有問題,同樣也可提供最大精度,其 CMRR 值達 90 dB 以上。
THE END
在設計中必須根據差分放大器電路的精度要求仔細選擇外部電阻電路,以便實現系統的高性能。或者,可以使用集成式差分放大器,如在單晶元中集成了匹配電阻的 LTC6363。