eth吃雞源碼
A. ZYNQ+linux網口調試筆記(3)PL-ETH
在ZYNQ上使用gigE Vision協議的網路介面相機。
第一步:調通PS側網口GEM0(Xilinx BSP默認配好)。
第二步:調通PS側網口GEM1(見前一篇文檔:開發筆記(1))。
第三步:調通PL側網口(本文闡述)。
第四步:在PL側網口上驗證Jumbo Frame特性,並在應用層適配gigE Vision協議。
根據《xapp1082》可知,PL側的PHY支持1000Base-X和SGMII兩種配置,這兩種配置對應兩種不同的PHY引腳介面(連接到MAC)。而我們的hdf文件使用的是1000Base-X的配置。
關於網口的Linux驅動,我們在官網找到一份資料: Xilinx Wiki - Zynq PL Ethernet 。資料很長,我們只看與我們相關的2.4.1 PL Ethernet BSP installation for 1000Base-X」這一章節就可以了。
首先導入FPGA設計同事提供的hdf文件:
在彈出的圖形界面里,進入Subsystem AUTO Hardware Settings——Ethernet Settings——Primary Ethernet,確認可以看到PL側網路設備axi_ethernet_0,說明hdf文件里已包含了必要的網口硬體信息:
上圖中被選中的網口將成為Linux上的設備eth0。這里我們默認選擇ps7_ethernet_0,即使用GEM0作為首選網口。
啟用Xilinx AXI Ethernet驅動
進入Device Drivers -- Network device support – 選中Xilinx AXI Ethernet(以及Xilinx Ethernet GEM,這是PS側網口的驅動)
進入Networking support – 選中 Random ethaddr if unset
進入Device Drivers -- Network device support -- PHY Device support and infrastructure – 啟用Drivers for xilinx PHYs
進入~~~~Device Drivers -- DMA Engine Support -– 禁用~~~~Xilinx AXI DMAS Engine~~~ (對應的配置項名為 ~~ CONFIG_XILINX_DMA ~~~)
注意: Xilinx Wiki里對設備樹節點的引用有誤(&axi_ethernet),導致編譯報錯,應改為&axi_ethernet_0。
註:PL-ETH驅動所在路徑:<project>/build/tmp/work-shared/plnx_arm/kernel-source/drivers/net/ethernet/xilinx/xilinx_axienet_main.c和xilinx_axienet_mdio.c。對應的內核配置項為CONFIG_NET_VENDOR_XILINX和CONFIG_XILINX_AXI_EMAC。
啟用ethtool和tcpmp(調試用,非必須):
然後將生成的BOOT.BIN和image.ub拷貝到SD卡根目錄下,將SD卡插入板子上,上電運行。
上電後,使用ifconfig eth1查看網口信息,觀察MAC地址與設置的一致,且ifconfig eth1 192.168.1.11 up沒有報錯。
測試網路通路:ping PC是通的。說明網口工作正常。
Linux下eth1(即PL-ETH)的MAC地址有誤
問題描述:
開機列印:
注意:
MAC地址是錯的,驅動里解析出的是GEM0的MAC地址。
試驗發現,即使在system-user.dtsi里不寫local-mac-address,也照樣解析出的是GEM0的MAC。
而將system-user.dtsi里的local-mac-address改名為pl-mac-address,並將驅動里解析的字元串也對應更改為pl-mac-address,則可以正確解析出來:
Passing MAC address to kernel via Device Tree Blob and U-Boot:
http://zedboard.org/content/passing-mac-address-kernel-device-tree-blob
通過更改u-boot環境變數和設備樹,為每個板子設置一個獨特的MAC地址:
https://www.xilinx.com/support/answers/53476.html
U-Boot里的環境變數ethaddr會覆蓋掉設備樹里pl-eth的local-mac-addr欄位,從而影響Linux啟動後的網卡MAC地址;
但U-Boot里的環境變數ipaddr不會對Linux啟動後的配置產生任何影響。因為設備樹里根本就沒有關於IP地址的配置。
phy-mode怎麼會是sgmii?查了下官方的提供的BSP里,也是「sgmii」。說明這個沒問題。具體原因不清楚。
@TODO: 設備樹里的中斷號的順序如何影響功能?
為何讀出來的IRQ號不對呢?這是因為這里讀到的不是硬體的中斷號,而是經過系統映射之後的軟體IRQ number。兩者不具有線性關系。
關於中斷號的疑問:
Linux上的網口eth0、eth1的順序,似乎是按照phy地址從小到大來排布的。
Xilinx xapp1082-zynq-eth.pdf (v5.0) July 16, 2018
https://www.xilinx.com/support/documentation/application_notes/xapp1082-zynq-eth.pdf
Xilinx Wiki - Zynq PL Ethernet:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841633/Zynq+PL+Ethernet
Xilinx Wiki - Linux Drivers:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841873/Linux+Drivers
Xilinx Wiki - Linux Drivers - Macb Driver:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841740/Macb+Driver
Xilinx Wiki - Zynq Ethernet Performance:
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841743/Zynq+Ethernet+Performance
查到關於Jumbo frame MTU的定義,當前值為9000,可否改大一些?
驅動源碼里關於jumbo frame的說明:
設置MTU為9000,發現ping包最大長度只能設為ping 192.168.1.10 -s 1472
https://lore.kernel.org/patchwork/patch/939535/
【完】
B. 【ETH錢包開發02】導入錢包
本文主要講解通過助記詞、keystore、私鑰 3種方式來導入錢包。導入錢包就是說根據輸入的這3者中的一個去重新生成一個新的錢包。導入錢包的過程和創建的過程其實是差不多的。
根據助記詞導入錢包不需要原始密碼,密碼可以重新設置。根據用戶輸入的助記詞,先驗證助記詞的合規性(格式、個數等),驗證正確後,配合用戶輸入的密碼重新生成一個新的錢包。
驗證助記詞的合規性(格式、個數等)
助記詞導入錢包
通過私鑰導入錢包其實和創建錢包的過程基本一致。因為私鑰在導出的時候轉換成了16進制,所以在導入私鑰的時候,要把16進制轉換為byte數組。
keystore就是錢包文件,實際上就是錢包信息的json字元串。導入keystore是需要輸入密碼的,這個密碼是你最後導出keystore時的密碼。將keystore字元串變成walletFile實例再通過 Wallet.decrypt(password, walletFile); 解密,成功則可以導入,否則不能導入。
這是Web3j的API,程序走到這里經常OOM!
具體原因的話,我就不多說了,細節大家可以看這里
https://www.jianshu.com/p/41d4a38754a3
解決辦法
根據源碼修改 decrypt 方法,這里我用一個已經修改好的第三方庫
修改後的解密方法
導入Kestore
1、導入助記詞和私鑰是不需要以前的密碼的,而是重新輸入新的密碼;導入Keystore則需要以前的密碼,如果密碼不正確,會提示地址和私鑰不匹配。
2、關於備份助記詞
用過imtoken的同學可以看到imtoken是可以導出(備份)助記詞的。這個一開始我也很困惑,後來了解到其實它實在創建錢包的時候,在app本地保存了助記詞,導出只是講數據讀取出來而已。還有一點,imtoken一旦備份了助記詞之後,之後就沒有備份那個功能了,也就是說助記詞在本地存儲中刪除了;而且導入錢包的時候也是沒有備份助記詞這個功能的。
C. 以太坊架構是怎麼樣的
以太坊最上層的是DApp。它通過Web3.js和智能合約層進行交換。所有的智能合約都運行在EVM(以太坊虛擬機)上,並會用到RPC的調用。在EVM和RPC下面是以太坊的四大核心內容,包括:blockChain, 共識演算法,挖礦以及網路層。除了DApp外,其他的所有部分都在以太坊的客戶端里,目前最流行的以太坊客戶端就是Geth(Go-Ethereum)
D. 比特藍鯨上的三種幣BTC、ETH、USDT是屬於什麼意思
BTC是比特幣,ETH是以太坊幣,USDT是由美國Tether公司為了與美元等值發行的一種代幣
E. 誰能解釋一下這些參數NIO_gen_eth:\Device\NPF_{F18BDEFB-F232-46E7-BC84-79411CB4D6F5}
首先澄清一點:這三個方法都是ByteBuffer的抽象基類Buffer定義的方法,ByteBuffer只是繼承了它們。
****************************************************
其次,你要理解緩沖區的概念,就是Buffer的意義:緩沖區是特定基本類型元素的線性有限序列。除內容外,緩沖區的基本屬性還包括容量、限制和位置:
緩沖區的容量 是它所包含的元素的數量。緩沖區的容量不能為負並且不能更改。
緩沖區的限制 是第一個不應該讀取或寫入的元素的索引。緩沖區的限制不能為負,並且不能大於其容量。
緩沖區的位置 是下一個要讀取或寫入的元素的索引。緩沖區的位置不能為負,並且不能大於其限制。
任何插入或讀取都不能超出限制。
標記、位置、限制和容量值遵守以下不變式:
0 <= 標記 <= 位置 <= 限制 <= 容量
新創建的緩沖區總有一個 0 位置和一個未定義的標記。初始限制可以為 0,也可以為其他值,這取決於緩沖區類型及其構建方式。一般情況下,緩沖區的初始內容是未定義的。
******************************************************
clear() 使緩沖區為一系列新的通道讀取或相對放置 操作做好准備:它將限制設置為容量大小,將位置設置為 0。
通道讀取指從通道將數據讀入到buffer中,相對放置是從位置開始將數據插入到buffer中
flip() 使緩沖區為一系列新的通道寫入或相對獲取 操作做好准備:它將限制設置為當前位置,然後將位置設置為 0。
把限制設置為當前位置是為了保證數據的可靠性。讓從buffer寫入到通道的數據是buffer中確實是已經存在的數據。
rewind() 使緩沖區為重新讀取已包含的數據做好准備:它使限制保持不變,將位置設置為 0。
和clear()類似,只是不改動限制
這三個方法在源碼上就對緩沖區的數據不進行任何修改
F. 什麼是以太幣/以太坊ETH
以太幣(ETH)是以太坊(Ethereum)的一種數字代幣,被視為「比特幣2.0版」,採用與比特幣不同的區塊鏈技術「以太坊」(Ethereum),一個開源的有智能合約成果的民眾區塊鏈平台,由全球成千上萬的計算機構成的共鳴網路。開發者們需要支付以太幣(ETH)來支撐應用的運行。和其他數字貨幣一樣,以太幣可以在交易平台上進行買賣 。
溫馨提示:以上解釋僅供參考,不作任何建議。入市有風險,投資需謹慎。您在做任何投資之前,應確保自己完全明白該產品的投資性質和所涉及的風險,詳細了解和謹慎評估產品後,再自身判斷是否參與交易。
應答時間:2020-12-02,最新業務變化請以平安銀行官網公布為准。
[平安銀行我知道]想要知道更多?快來看「平安銀行我知道」吧~
https://b.pingan.com.cn/paim/iknow/index.html