ltc2400電路
① 筆記本保護隔離電路常見故障
如果筆記本電腦接上電源適配器,測試公共點上沒有16V左右的電壓,這時需要檢修保護隔離電路。
1.檢測輸入電壓
在檢修筆記本電腦的時候先拔掉筆記本電腦電池,接上可調電源,測量筆記本電腦主板電源介面是否有15-24V的電壓輸入,監測整機電流,同時判斷電源適配器是否正常。
2.檢測輸出電壓
找到主板的公共點。以目前採用最多的MAX1632的第22腳為公共點,LTC1628的22腳是公共點,或者測試該晶元的電源濾波電容兩端的電壓,以及高端場效管的D級電壓。
測量主板公共點的電壓是否正常。如果電壓正常說明整個保護隔離電路是良好的,其他部位有故障;如果公共點沒有電壓,則需要檢修保護隔離電路。
筆記本電腦的電路比較緊密,不容易查找,在測試過程中,選擇標志性的元件。
3.檢查輸入與輸出電路之間的元件
當確定保護隔離電路有故障時,從電源介面開始跑電路,找出電源介面和公共點之問的電子元件。保護隔離電路的元件很少,關鍵性元件最多不超過五個,典型電路如下圖所示。
保護隔離電路的測量方法。
(1)用萬用表1?Ω擋測量公共點和電源介面對地電阻,判斷是否短路,如電阻接近或等於0Ω,說明有電路有短路故障,首先排除短路元件。
(2)從電源介面依次測量電壓,如共模濾波器、保險管、隔離二極體和場效應管,哪一個元件有電壓輸入、沒有輸出,說明該元件可能有故障。
(3)如果場效應管有電壓輸入、沒有輸出,斷電後判斷場管為N溝通還是P溝道,確定場管的G極為高電平導通還是低電平導通,然後加電測試場管的G極控制電壓是否正常,如控制條件滿足但場效應管不工作,說明場效應管損壞,需要更換場效應管,如G極沒有相應的電平,不符合場效應管導通條件,按下開機鍵測量是否能工作,否則應檢修場管G極相連接的控制電路。
N溝通場效應管的柵極為高電平時場效應管導通,P溝道場效應管的柵極為低電平時場效應管導通。
② 脈沖頻率調制開關穩壓器電路分析
V4V5組成無穩態多諧振盪器。
無穩態即指它不能穩定在某種狀態,會不斷的發生改變。兩個管輪流導通截止。
多諧指輸出的波形不是正弦波,有很多諧波成分。
比多諧振盪器並不完全對稱,所以輸出的波形是不對稱的。V4的導通時間由R8、R5和V3的集電極電壓決定。
V2是一個射極跟隨器(跟隨輸出電壓),把輸出的電源電壓反饋到V3的發射級,由V3放大後控制V4的導通時間。
V4導通V5截止,V4截止V5導通。
V5截止時,V1導通,通過V5的截止時間控制V1的導通時間。V1導通時間越長,輸出電壓越高。
V1輸出的電壓經L1和C1濾波變成穩定的直流電源輸出。
VD4是增強二極體,防止L1在V1截止時產生的高反壓擊穿V1發射極基極。
VD1是泄流二極體,防止L1產生的感應電流損壞V1。
此電路主要工作在開關狀態,所以比較容易分析。
V2V3是射極偶合放大電路,VD2為V3基極提供更穩定一點的電位,增強R4的偶合效率。
VD3為振盪器和放大取樣電路提供相對穩定一點的工作電壓。
R1R2是V2的基極偏置電路,同時也是輸出電源的取樣電路。
③ 萬用表晶元有哪些數碼之家
數碼之家萬用表晶元有以下:
1、AD636:這是一款高精度的電流檢測晶元,適用於碧薯直流和交流電流測量。
2、MAX4239:這是一款精度高、功耗低的運算放大明慧爛器,適用於高精度電壓測量和電流測量。
3、AD8495:這是一款高精度的溫度檢測晶元,適用於溫度測量和控制。
4、MAX31865:這是一激漏款熱電偶介面晶元,適用於測量高溫環境下的溫度。
5、LTC2400:這是一款高精度的模數轉換器,適用於電壓和電流測量。
6、ADS1115:這是一款16位精度的模數轉換器,適用於電壓和電流測量。
7、INA219:這是一款高精度的電流和電壓監測晶元,適用於電源管理和電流測量。以上是一些常見的萬用表晶元,不同的晶元適用於不同的測量需求和應用場景。
④ 關於單片機電子秤中A/D轉換器可以用哪些型號的
HX 711AD是常用電子秤AD晶元
⑤ 充電電路原理圖解釋
上圖為充電器原理圖,下面介紹工作原理。
1.恆流、限壓、充電電路。該部分由02、R6、R8、ZD2、R9、R10和R13等元件組成。當接通市電叫,開關變壓器T1次級感應出交流電壓。經D4、C4整流濾波後提供約12.5V直流電壓。一路通過R6、R1l、R14、LED3(FuL飽和指示燈)和R15形成迴路,LED3點亮,表示待充狀態:另一路電壓通過R8限流,ZD2(5V1)穩壓,再由並聯的R9、R10和R13分壓為Q2b極提供偏置,使Q2處於導通預充狀態。恆流源機構由Q2與其基極分壓電阻和ZD2等元件組成。當裝入被充電池時12.5V電壓即通過R6限流,經Q2的c—e極對電池恆流充電。這時由於Ul(Ul為軟封裝IC型號不詳)與R6並聯。R6兩端的電壓降使其①腳電位高於③腳,②腳就輸出每秒約兩個負脈沖。
使LED2(CH充電指示燈)頻頻閃爍點亮,表示正在正常充電。隨著被充電池端電壓的逐漸升高,即Q2 e極電位升高,升至設定的限壓值(4.25V)時,由於Q2的b極電位不變,使Q2轉入截止,充電結束。這時Q2c極懸空,Ul的③腳呈高電位,U1的②腳輸出高電平,LED2熄滅。這時電流就通過R6、R11、R14限流對電池涓流充電,並點亮LED3。LED3作待充、飽和、涓流充電三重指示。
2.極性識別電路。此部分由R12和LEDl(TEST紅色極性指示燈)構成。保護電路由Q3和R7等元件構成。假設被充電池極性接反了。
LED1就正偏點亮,警告應切換開關K,才能正常充電。如果電池一旦接反,Q3的I)極經R7獲得正偏置,Q3導通,Q2的b極電位被下拉短路而截止,阻斷了電流輸出(否則電池就會被反充而報廢),從而保護了電池和充電器兩者的安全。
⑥ 請問下常用的電壓轉換晶元都有哪幾種啊有沒有高手指點下,謝謝!
有AD637、LTC1966、LTC1967、LTC1968等等。
晶元,英文為Chip;晶元組為Chipset。晶元一般是指集成電路的載體,也是集成電路經過設計、製造、封裝、測試後的結果,通常是一個可以立即使用的獨立的整體。「晶元」和「集成電路」這兩個詞經常混著使用,比如在大家平常討論話題中,集成電路設計和晶元設計說的是一個意思,晶元行業、集成電路行業、IC行業往往也是一個意思。
⑦ 低壓差線性穩壓器設計原理與應用的目錄
前言
第一章低壓差線性穩壓器概述
第一節低壓差線性穩壓器的術語
第二節線性穩壓器的原理及內部保護電路
一、線性穩壓器的原理
二、線性穩壓器的內部保護電路
第三節線性穩壓器典型產品的原理及典型應用
一、三端固定式穩壓器的原理及典型應用
二、三端可調式穩壓器的原理及典型應用
第四節低壓差線性穩壓器的原理
一、PNP型低壓差線性穩壓器(LDO)的原理
二、准低壓差線性穩壓器(QLDO)的原理
三、超低壓差線性穩壓器(VLDO)的原理
第五節低壓差線性穩壓器的主要特點及產品分類
一、低壓差線性穩壓器的主要特點
二、低壓差線性穩壓器的產品分類
三、低壓差線性穩壓器與其他穩壓器的性能比較
第六節低壓差線性穩壓器的應用領域及典型用法
一、低壓差線性穩壓器的應用領域
二、低壓差線性穩壓器的幾種典型用法
第七節低壓差線性穩壓器的選擇方法及使用注意事項
一、低壓差線性穩壓器的選擇方法
二、低壓差線性穩壓器的使用注意事項
第八節低壓差線性穩壓器典型產品的主要技術指標
第二章低壓差線性穩壓器設計軟體使用方法及設計實例
第一節低壓差線性穩壓器設計軟體的分類
第二節LDO-It設計軟體的工具欄及使用方法
一、LDO-It設計軟體的工具欄
二、LDO-It設計軟體的使用方法
第三節LDO-It設計軟體的應用實例
第四節利用WEBENCH軟體在線選擇低壓差線性穩壓器的方法
第三章低壓差線性穩壓器的原理與應用
第一節LM1117型准低壓差線性穩壓器
一、LN1117型准低壓差線性穩壓器的原理
二、LM1117型准低壓差線性穩壓器的應用
第二節SPX1117型准低壓差線性穩壓器
一、SPX1117型准低壓差線性穩壓器的原理
二、SPX1117型准低壓差線性穩壓器的應用
第三節LP2950/2951型低壓差線性穩壓器
一、LP2950/2951型低壓差線性穩壓器的原理
二、LP2951型低壓差線性穩壓器的應用
第四節LM2990/2991型負壓輸出式低壓差線性穩壓器
一、LM2990/2991型低壓差線性穩壓器的原理
二、LM2990型低壓差線性穩壓器的應用
三、LM2991型低壓差線性穩壓器的應用
第五節MIC68200型具有排序與跟蹤功能的低壓差線性穩壓器
一、MIC68200型低壓差線性穩壓器的原理
二、MIC68200型低壓差線性穩壓器的應用
第六節其他低壓差線性穩壓器的典型應用及使用技巧
一、LM2937型低壓差線性穩壓器的典型應用
二、MIC2941A型低壓差線性穩壓器的典型應用及使用技巧
三、NCV8675型低壓差線性穩壓器的典型應用
四、NCP1086型低壓差線性穩壓器的使用技巧
第四章超低壓差線性穩壓器的原理與應用
第一節TC10XX/20XX系列高精度超低壓差線性穩壓器
一、TC10XX/20XX系列超低壓差線性穩壓器的性能特點
二、TC10XX/20XX系列超低壓差線性穩壓器的原理與應用
三、使用注意事項
第二節MCP17XX/18XX系列高精度超低壓差線性穩壓器
一、MCP17XX/18XX系列超低壓差線性穩壓器的性能特點
二、MCP1700/1702超低壓差線性穩壓器的原理與應用
三、MCP1725/1726/1727/1827/1827S超低壓差線性穩壓器的原理與應用
第三節SP62XX系列超低壓差線性穩壓器
一、SP62XX系列超低壓差線性穩壓器的性能特點
二、SP6200/6201型超低壓差線性穩壓器的原理與應用
三、SP6203/6205型超低壓差線性穩壓器的原理與應用
第四節TPS73XX系列具有延時復位功能的超低壓差線性穩壓器
一、TPS73XX系列超低壓差線性穩壓器的性能特點
二、TPS73XX系列超低壓差線性穩壓器的原理
三、TPS73XX系列超低壓差線性穩壓器的典型應用
第五節MAX483X系列具有軟啟動功能的超低壓差線性穩壓器
一、MAX483XX系列超低壓差線性穩壓器的原理
二、MAX483XX系列超低壓差線性穩壓器的典型應用
第六節HT71XX/72XX系列高輸入電壓的超低壓差線性穩壓器
一、HT71XX/72XX系列超低壓差線性穩壓器的原理
二、HT71XX系列超低壓差線性穩壓器的應用技巧
第七節其他超低壓差線性穩壓器的原理與應用
一、MAX1735型超低壓差線性穩壓器的原理與應用
二、MAX5005型超低壓差線性穩壓器的原理與應用
三、LP38851型超低壓差線性穩壓器的應用
第五章多路輸出式超低壓差線性穩壓器的原理與應用
第一節雙路輸出式超低壓差線性穩壓器
一、TC1301/1302系列雙路輸出式VLDO的原理
二、TC1301/1302系列雙路輸出式VLDO的典型應用
第二節三路輸出式超低壓差線性穩壓器
一、MIC2215型三路輸出式VLDO的原理
二、MIC2215型三路輸出式VLDO的典型應用
第三節一次性可編程四路輸出式超低壓差線性穩壓器
一、AS1352型可編程四路輸出式VLDO的原理
二、AS1352型可編程四路輸出式VLDO的典型應用
第四節帶串列介面的可編程五路輸出式超低壓差線性穩壓器
一、MAX1798/1799型帶串列介面的五路輸出式VLDO的原理
二、MAX1798/1799在CDMA數字行動電話中的應用
三、MAX1799的評估板及專用工具軟體
第五節其他多路輸出式低壓差、超低壓差線性穩壓器的原理與應用
一、LM2935型雙路輸出式LDO的原理與應用
二、CAT6221型雙路輸出式VLDO的原理與應用
三、LP2966型雙路輸出式VLDO的原理與應用
四、R5320X系列三路輸出式VLDO的原理與應用
第六章大電流輸出式低壓差線性穩壓器的原理與應用
第一節1.5A低壓差、超低壓差線性穩壓器
一、MSK5101型1.5A大電流LDO的原理與應用
二、LTC3026型升壓變換式1.5A大電流VLDO的原理與應用
第二節3A低壓差、超低壓差線性穩壓器
一、LP38501-ADJ/38503-ADJ型3A大電流VLDO的原理與應用
二、SPX1582型3A大電流LDO的原理與應用
第三節適用於USB系統的3A低壓差線性穩壓器
一、MIC29311型3A大電流LDO的原理
二、MIC29311型3A大電流LDO的典型應用
第四節5A低壓差線性穩壓器
一、LMS1585A型5A大電流LD0的典型應用
二、DF1084型5A大電流LDO的典型應用
三、SPX1585型5A大電流LDO的典型應用
第五節7.5A/8A低壓差線性穩壓器
一、MIC2971X/2975X系列7.5A大電流LDO的原理與應用
二、SPX1584型8A大電流LDO的典型應用
第七章特種低壓差線性穩壓器的原理與應用
第一節高壓輸入式低壓差線性穩壓器
一、MAX8718/8719型28v高壓輸入式LDO的原理與應用
二、LT3012/3014型80V高壓輸入式LDO的原理與應用
第二節具有峰值電流輸出能力的低壓差線性穩壓器
一、MIC5216型具有峰值輸出能力的LD0的原理與應用
二、峰值電流輸出的應用實例
第三節單路輸出式低壓差和超低壓差線性穩壓控制器
一、LT1123型低壓差線性穩壓控制器的原理與應用
二、MIC5156型超低壓差線性穩壓控制器的原理與應用
第四節多路輸出式超低壓差線性穩壓控制器
一、MAX8563/8564型超低壓差線性穩壓控制器的原理
二、MAX8563/8564型超低壓差線性穩壓控制器的典型應用
第五節帶DC/DC變換器的復合式低壓差和超低壓差線性穩壓器
一、LTC3448型復合式低壓差線性穩壓器的原理與應用
二、TC1304型復合式超低壓差線性穩壓器的原理與應用
第六節帶超低壓差線性穩壓器的可編程鋰離子電池充電器
一、帶vIDO的可編程鋰離子電池充電器的原理
二、帶VLDO的可編程鋰離子電池充電器的典型應用
第七節LM2984/2984C型基於LDO的微處理器電源系統
一、LM2984/2984C型微處理器電源系統的原理
二、LM2984/2984C型微處理器電源系統的典型應用
第八章低壓差線性穩壓器的電路設計
第一節低壓差線性穩壓器的設計要點
一、低壓差線性穩壓器的基本類型
二、低壓差線性穩壓器電路設計要點
三、低壓差線性穩壓器的布局
四、低壓差線性穩壓器及散熱器的裝配技術
第二節低壓差線性穩壓器關鍵外圍元器件的選擇
一、輸入電容器、輸出電容器及旁路電容器的選擇
二、外部取樣電阻及電流檢測電阻的選擇
三、外部功率MOSFET的選擇
四、低壓差線性穩壓器封裝形式的選擇
第三節低壓差線性穩壓器常見故障分析
一、低壓差線性穩壓器常見故障一覽表
二、低壓差線性穩壓器常見故障分析
第四節提高低壓差線性穩壓器輸出電壓精度的方法
一、影響LDO輸出電壓精度的主要因素
二、提高LDO輸出電壓精度的方法
第五節減小浪涌電流及改善瞬態響應的方法
一、減小LDO浪涌電流的方法
二、改善LDO瞬態響應的方法
三、LDO瞬態響應的測試方法
第六節可編程低壓差線性穩壓器的電路設計
一、數字電位器的原理
二、可編程低壓差線性穩壓器的電路設計
第九章低壓差線性穩壓器的使用技巧
第一節提高低壓差線性穩壓器輸入電壓的方法
第二節利用外部雙極型晶體管擴展LDO負載電流的方法
一、MAX8863型超低壓差線性穩壓器的原理與應用
二、利用晶體管擴展MAX8863負載電流的方法
第三節利用外部場效應晶體管擴展LDO負載電流的方法
一、MIC5158型低壓差線性穩壓控制器的基本應用
二、利用場效應晶體管擴展MIC5158負載電流的方法
第四節低壓差線性穩壓器的並聯使用方法
第五節能從零伏起調的低壓差線性穩壓器應用電路
一、可調式低壓差線性穩壓器的典型應用電路
二、能實現低壓差線性穩壓器從零伏起調的兩種方法
第六節由低壓差線性穩壓器構成恆流源的方法
一、由低壓差線性穩壓器構成的簡易恆流源
二、由超低壓差線性穩壓控制器構成的恆流源
第十章低壓差線性穩壓器的應用實例
第一節低壓差線性穩壓器在計算機電源中的應用
一、對計算機電源的設計要求
二、5V/3.3V低壓差電源變換器的設計方案
三、獲取其他輸出電壓標稱值的簡便方法
四、多路輸出式低壓差線性穩壓器的設計方案
第二節低壓差線性穩壓器在攜帶型電子產品中的應用
一、對攜帶型電子產品電源的設計要求
二、減小低壓差線性穩壓器互相干擾的方法
第三節低壓差線性穩壓器在精密數控基準電壓源中的應用
一、MAX5130A的原理
二、精密數控基準電壓源的電路設計
第十一章低壓差線性穩壓器的散熱器設計
第一節散熱器的基本工作原理與安裝方法
一、LD0的工作壽命與最高結溫的關系
二、散熱器的基本工作原理
三、塑料封裝式LDO的散熱器安裝方法
第二節平板式散熱器的設計
一、平板式散熱器的設計方法
二、印製板式散熱器的設計方法
第三節成品散熱器的熱參數與熱參數計算
一、成品散熱器的熱參數
二、成品散熱器的熱參數計算
第四節大電流輸出式LDO的散熱器設計
一、大電流輸出式LDO的散熱曲線圖
二、大電流輸出式LDO的散熱器設計示例
第五節在風冷條件下的散熱器設計
一、在風冷條件下的散熱器選擇
二、散熱器的特性曲線
三、利用功率分配電阻來減小散熱器尺寸的方法
第六節不同封裝的LDO散熱器設計實例
第七節多片LDO並聯使用散熱器的設計實例
第八節設計散熱器的常用工具軟體
一、設計線性穩壓器散熱器的通用工具軟體
二、設計低壓差線性穩壓器散熱器的專用工具軟體
參考文獻
⑧ 這個防反接電路的原理
大概原理是這樣,這是集成運放構成的反電壓保護電路,不反接第一個集成運放輸出為U-<U+=Uo=+UoM高電平,對應的三極體導通,第二個集成運放U+<U-=Uo=-UoM低電平對應的Q1導通,反接側輸出狀態跟上面相反。
假如電源出現故障或短路,那麼 ltc4357 確保在 0.5us 內迅速斷開,以最大限度地減小反向瞬態電流。ltc4357 還可以用來保護電源免受反向電壓影響,為下游電子組件提供輸進反向保護。另外,該器件可以利用一個熱插拔(hot swap)控制器和保持電容器進行配置,以在輸進功率損失之後提供一段時間的輸進電源保持。這樣一來,在出現短暫的輸進電源中斷後,無需復位或重新啟動就能實現系統連續工作。