當前位置:首頁 » 幣種行情 » ltc238618測量電壓

ltc238618測量電壓

發布時間: 2022-03-27 05:24:19

㈠ 如圖的LTC1624晶元,可以通過控制ITH端的電壓來控制輸出端J3_1的電壓嗎 其中TP5=5V,VIN=14.4V

只能控制其是否輸出。在1.19V~2.4V之間時,器件正常工作;低於0.8V,則器件處於關斷狀態。

㈡ 3片LTC6804-1級聯讀不到電壓緊急求助

要是你確定硬體沒有問題,那你就把你發給三塊晶元的配置寄存器發一樣的(按照第一塊晶元的發送),還有就是看看在進行ISOSPI的延時有沒有問題,參考一下手冊上面的延時時間。第一塊能讀取數據就說明SPI的時序是對的,我認為可能的問題就是在喚醒的延時上面還有就是在配置寄存器的賦值,你可以測量先通過發送寄存器再讀取寄存器的值來檢測通信是否正常。

㈢ LTC6803測電池電壓均衡的片子,您有電路圖嗎

應用電路二

通用的VTEMP ADC輸入可用於對任何0V至4V信號進行數字轉換,其准確度與第1節電池的ADC輸入緊密對應。提供的一個有用信號是高准確度電壓基準,例如:來自LTC6655-3.3的3.300V。利用該信號的周期性讀數,主機軟體能校正LTC6803讀數,以把准確度提升至超過內部LTC6803基準的水平和/或驗證ADC操作。圖20示出了一種在LTC6803-1的GPI01輸出的控制下,優先選擇利用電池組對一個LTC6655-3.3進行供電的方法。如果由VREG供電,那麼基準IC的操作功耗將給LTC6803增加明顯的熱負載,因此採用一個外部高電壓NPN傳輸晶體管從電池組形成一個局部4.4V電源(Vbe低於VREG)。GPI01信號負責控制一個PMOS FET開關,以在即將執行校準時啟動基準。由於GPIO信號在停機模式中默認至邏輯高電平,因此在空閑周期中基準將自動關斷。

ltc6803中文資料(ltc6803引腳及功能_特性參數及典型應用電路圖)

另一個有用的信號是電池組的總電壓值。這可在正常採集過程中出現操作故障時提供一種冗餘的可用電池測量,或作為一種更加快捷的監視整個電池組電壓的方法。圖21示出了怎樣採用一個阻性分壓器來獲得完整電池組電壓的比例表示。當IC進入待機模式時(即:當WDTB變至低電平時),採用一個MOSFET使電池組上的阻性負載斷接。圖中示出了一個LT6004微功率運算放大器部分,用於緩沖分壓器信號以保持准確度。該電路的優點是:其轉換頻度大約可以比整個電池陣列的快4倍,因而提供了一個較高的采樣速率選項(代價則是精度/准確度略有下降),從而為校準與電池平衡數據保留了高解析度電池讀數。

㈣ LTC1044負電壓轉換器什麼原理,什麼用

簡易的頻率到電壓轉換器
簡易的頻率到電壓轉換器 簡易的頻率電壓轉換器,在0到3.4kHz范圍內提供1mV/Hz信號輸出 如圖是一個簡易的頻率到電壓轉換器,它使用了開關電容式電壓轉換器。該電路的輸 出電壓符合下面的等式,此處K=2.44(對於LTC1044),f為輸入頻率。 Vout=K×f×R1×C1 當電源電壓為+5V時,Vout的最大值接近3.4V。在使用該電路時,應重視電源的穩壓和濾 波。按圖所示電路的參數值,在0到3.4kHz的范圍內輸出信號以1mV/Hz變化。你可以通過 選擇C2的值來達到較理想的響應時間和脈動。在LTC1044的7腳輸入的最大頻率約為100k Hz。你也可以用7660等元件替換IC1,但溫度穩定性不好,且一定程度上有不同的K值。

㈤ LTC2370-16用stm32 的spi讀出的數據不正常

LTC2370-16 16-Bit, 2Msps, 採集電壓,輸入5v能採集到電壓5.05

㈥ 運放失調電壓的測量原理

對雜訊增益作斬波以實時測量運放失調電壓
技術分類: 測試與測量 模擬設計 | 2008-06-30
Glen Brisebois, Linear Technology, San Jose, CA
運算放大器的一個最重要的指標就是它的輸入失調電壓。對很多運放可以忽略這個電壓,但問題是:失調電壓會隨著溫度、閃爍雜訊和長期漂移而改變。斬波與自動調零技術已經出現多年,它們能夠將輸入失調電壓減小到微伏以下。這種技術的精度非常好,甚至會讓其它微小影響占據誤差的主要地位,如銅焊盤的熱偶節點,直到它們也被一一克服。本設計實例介紹了一種新型斬波技術。「雜訊增益的斬波」是一種實時測量失調電壓的簡單方法,這樣就可以將其減除,從而提高DC精度。

圖1是一個搭成反相10倍增益結構的LTC6240HV運放,也包括了它的一些相應規格。所有輸入失調電壓都在輸出端表示為11倍增益(稱為「雜訊增益」)的輸出誤差。任何下游電路或輸出電壓的觀測者都無法將所需輸出信號與輸出誤差區別開來。

圖2表示了雜訊增益的斬波方法。S1用於附帶分流電阻R3的進出切換,從而在不影響信號增益或帶寬時改變雜訊增益。通常情況下帶寬會有些下降,但無論開關處於閉合或打開狀態,帶寬極限都由C1決定。現在向輸出端施加一個小方波,其幅度等於現有的DC誤差。可以用一個普通的斬波器解調出誤差,也可以在一個現代的ADC系統中用軟體減掉它。
圖2電路更像一個輸入同時連接和斷接的簡單求和放大器。這個意義上,它更像一個真正的斬波放大器。但此時,被斬波的輸入電壓是放大器的失調電壓,而不是輸入信號。如果沒有必要為什麼要斷開輸入信號呢?另外也不存在連續斬波的要求,只需在有失調測量需求時用它即可。

注意,雖然本設計實例給出了易於理解的反相例子,但S1使用一種好的模擬開

㈦ 對於各種非正弦信號電壓,如何得到其有效電壓

用采樣方式得到離散值,進行AD變換獲得數字量。再對數字量進行離散FFT計算,分離出各頻譜的值,再加總。

根據傅里葉變換法則:任何類型的可導連續信號都可以轉換為一組正弦或者餘弦信號的累加。

計算方式很簡單,調用現成的C++類庫,有FFT計算的函數,將連續函數進行頻域變換,連續量就會轉化成離散量。

模擬化測量也可以,把信號通過一個電阻絲,獲得溫度值,直接計算出有效值。

㈧ 利用ltc2991一對通道能同時測電壓和電流嗎

一個DC 5v 2A供電,你是指的開關電源吧。 想要測得電流的話, 電壓可以直接並在開關電源兩端進行測量。 當然要形成迴路,接入負載,如果你想要他滿功率輸出的話,需要接入一個功耗為10W的負載,然後將電流表串接在迴路中。

㈨ ltc3115電壓反向轉換器怎麼計算輸出電壓

CPU供電依靠主板和電源共同完成。其流程為:電源---12V輸出---主板電感(由一個晶元控制)和電容---最後到達CPU內核。 CPU主供電的電壓,為12V左右,其可以在主板電感處,CPU供電介面處檢測。

㈩ 關於運放的選擇

推薦你用高精度的軌至軌雙運放OPA2333,該運放是常用的軌至軌運放,輸出幅度可以非常接近電源電壓。它是低功耗、小尺寸的零漂移放大器。它實現了高精度、微功耗以及微小型封裝的完美組合。OPA2333 具有超低失調 (2uV)、超低靜態電流 (17uA)、低至 1.8V 的工作電壓以及 SC70 或 SOT23 封裝等優異特性,是醫療儀器、溫度測量、測試設備、安全與消費類等應用領域的理想選擇。該運放價格不是很高,一般在5~10元。建議你買OPA2333,它是雙運放,OPA333是單運放。
另外,你的一級放大器放大倍數那麼大,是不是開環使用啊?運放開環使用附加失調電壓就是很大。

熱點內容
已知距離算沖擊力 發布:2025-05-17 07:18:11 瀏覽:433
區塊鏈發展的政治意義 發布:2025-05-17 07:17:24 瀏覽:172
比特幣熱潮導致顯卡漲價 發布:2025-05-17 07:13:06 瀏覽:325
公羊trx落地多少錢 發布:2025-05-17 07:06:07 瀏覽:829
BTC礦池挖礦地址 發布:2025-05-17 07:03:06 瀏覽:755
usdt投資顧問 發布:2025-05-17 06:52:27 瀏覽:136
區塊鏈金融證券 發布:2025-05-17 06:41:11 瀏覽:166
礦機算力分成多台 發布:2025-05-17 06:28:53 瀏覽:900
如何通過比特幣轉外匯 發布:2025-05-17 06:23:57 瀏覽:17
區塊鏈益處與弊端 發布:2025-05-17 06:23:57 瀏覽:615