當前位置:首頁 » 幣種行情 » ETH是乙烯嗎

ETH是乙烯嗎

發布時間: 2022-07-10 12:10:45

1. ETH是什麼

ETH(以太坊)原是一個平台和一種編程語言,由傑弗里維爾克創立,該平台可以使開發人員能夠建立和發布下一代分布式應用。
以太坊可以用來編程,分散,擔保和交易任何事物:投票,域名,金融交易所,眾籌,公司管理,
合同和大部分的協議,知識產權,還有得益於硬體集成的智能資產等。

2. 赤黴素 生長素 區別

赤黴素最突出的生理效應是促進莖的伸長和誘導長日植物在短日條件下抽薹開花。各種植物對赤黴素的敏感程度不同。遺傳上矮生的植物如矮生的玉米和豌豆對赤黴素最敏感,經赤黴素處理後株型與非矮生的相似;非矮生植物則只有輕微的反應。有些植物遺傳上矮生性的原因就是缺乏內源赤黴素(另一些則不然)。赤黴素在種子發芽中起調節作用。許多禾穀類植物例如大麥的種子中的澱粉,在發芽時迅速水解;如果把胚去掉,澱粉就不水解。用赤黴素處理無胚的種子,澱粉就又能水解,證明了赤黴素可以代替胚引起澱粉水解。赤黴素能代替紅光促進光敏感植物萵苣種子的發芽和代替胡蘿卜開花所需要的春化作用。赤黴素還能引起某些植物單性果實的形成。對某些植物,特別是無籽葡萄品種,在開花時用赤黴素處理,可促進無籽果實的發育。但對某些生理現象有時有抑製作用。
赤黴素應用於農業生產,在某些方面有較好效果。例如提高無籽葡萄產量,打破馬鈴薯休眠;在釀造啤酒時,用GA3來促進制備麥芽糖用的大麥種子的萌發;當晚稻遇陰雨低溫而抽穗遲緩時,用赤黴素處理能促進抽穗;或在雜交水稻制種中調節花期以使父母本花期相遇。
生長素在擴展的幼嫩葉片和頂端分生組織中合成,通過韌皮部的長距離運輸,自上而下地向基部積累。根部也能生產生長素,自下而上運輸。生長素有多方面的生理效應,這與其濃度有關。低濃度時可以促進生長,高濃度時則會抑制生長,甚至使植物死亡。
在細胞水平上,生長素可刺激形成層細胞分裂;刺激枝的細胞伸長、抑制根細胞生長;促進木質部、韌皮部細胞分化,促進插條發根、調節愈傷組織的形態建成。
在器官和整株水平上,生長素從幼苗到果實成熟都起作用。生長素控制幼苗中胚軸伸長的可逆性紅光抑制;當吲哚乙酸轉移至枝條下側即產生枝條的向地性;當吲哚乙酸轉移至枝條的背光側即產生枝條的向光性;吲哚乙酸造成頂端優勢;延緩葉片衰老;施於葉片的生長素抑制脫落,而施於離層近軸端的生長素促進脫落;生長素促進開花,誘導單性果實的發育,延遲果實成熟。

3. 什麼植物激素可以防止落花落果。高中生物

這種激素叫做乙烯。
乙烯是由兩個碳原子和四個氫原子構成的分子構成的化合物。兩個碳原子之間以雙鍵連接。乙烯存在於植物的某些組織、器官中,是由蛋氨酸在供氧充足的條件下轉化而成的。
乙烯是合成纖維、合成橡膠、合成塑料(聚乙烯及聚氯乙烯)、合成乙醇(酒精)的基本化工原料,也用於製造氯乙烯、苯乙烯、環氧乙烷、乙酸、乙醛、乙醇和炸葯等,尚可用作水果和蔬菜的催熟劑,是一種已證實的植物激素。
乙烯是世界上產量最大的化學產品之一,乙烯工業是石油化工產業的核心,乙烯產品占石化產品的75%以上,在國民經濟中佔有重要的地位。世界上已將乙烯產量作為衡量一個國家石油化工發展水平的重要標志之一。生理作用是:三重反應、促進果實成熟、促進葉片衰老、誘導不定根和根毛發生、打破植物種子和芽的休眠、抑制許多植物開花(但能誘導、促進菠蘿及其同屬植物開花)、在雌雄異花同株植物中可以在花發育早期改變花的性別分化方向等。
乙烯有4個氫原子的約束,碳原子之間以雙鍵連接。所有6個原子組成的乙烯是共面。氫碳碳角是121.3°;氫碳氫角是117.4 °,接近120 °,為理想sp2混成軌域。這種分子也比較僵硬:旋轉碳碳雙鍵是一個高吸熱過程,需要打破π鍵,而保留σ鍵之間的碳原子。其分子結構為平面矩形。雙鍵是一個電子雲密度較高的地方,因而大部分反應發生在這個位置。
通常情況下,乙烯是一種無色稍有氣味的氣體,密度為1.256kg/m^3,比空氣的密度略小,難溶於水,易溶於四氯化碳等有機溶劑。
①常溫下極易被氧化劑氧化。如將乙烯通入酸性高錳酸鉀溶液,溶液的紫色褪去,乙烯被氧化為二氧化碳,由此可用鑒別乙烯。
②易燃燒,並放出熱量,燃燒時火焰明亮,並產生黑煙。
加成反應:有機物分子中雙鍵(或三鍵)兩端的碳原子與其他原子或原子團直接結合生成新的化合物的反應。
乙烯能和溴發生加成反應,生成二溴乙烷。
在一定條件下,乙烯分子中不飽和的碳碳雙鍵中的一個鍵會斷裂,分子里的碳原子能互相形成很長的鍵且相對分子質量很大(幾萬到幾十萬)的化合物,叫做聚乙烯,它是高分子化合物。這種由相對分子質量較小的化合物(單體)相互結合成相對分子質量很大的化合物的反應,叫做聚合反應。這種聚合反應是由一種或多種不飽和化合物(單體)通過不飽和鍵相互加成而聚合成高分子化合物的反應,所以又屬於加成反應,簡稱加聚反應。
乙烯分子里的碳碳雙鍵的鍵長是1.33×10 -10 米,乙烯分子里的2個碳原子和4個氫原子都處在同一個平面上。它們彼此之間的鍵角約為120°。乙烯雙鍵的鍵能是615千焦/摩,實驗測得乙烷碳碳單鍵的鍵長是1.54×10 -10 米,鍵能348千焦/摩。這表明碳碳雙鍵的鍵能並不是碳碳單鍵鍵能的兩倍,而是比兩倍略少。因此,只需要較少的能量,就能使雙鍵里的一個鍵斷裂。這是乙烯的性質活潑,容易發生加成反應等的原因。
在形成乙烯分子的過程中,每個碳原子以1個2s軌道和2個2p軌道雜化形成3個等同的sp 2 雜化軌道而成鍵。這3個sp 2 雜化軌道在同一平面里,互成120°夾角。因此,在乙烯分子里形成5個σ鍵,其中4個是C—H鍵(sp 2 — s)1個是C—C鍵(sp 2 — sp 2 );兩個碳原子剩下未參加雜化的2個平行的p軌道在側面發生重疊,形成另一種化學鍵:π鍵,並和σ鍵所在的平面垂直。如:乙烯分子里的碳碳雙鍵官能團,是由一個σ鍵和一個π鍵形成的。這兩種鍵的軌道重疊程度是不同的。π鍵是由p軌道從側面重疊形成的,重疊程度比σ鍵從正面重疊要小,所以π鍵不如σ鍵牢固,比較容易斷裂,斷裂時需要的能量也較少。
希望我能幫助你解疑釋惑。

4. 植物激素的分類

即生長素(auxin)、赤黴素(GA)、細胞分裂素(CTK)、脫落酸(abscisic acid,ABA)、乙烯(ethyne,ETH)和油菜素甾醇(brassinosteroid,BR)。它們都是些簡單的小分子有機化合物,但它們的生理效應卻非常復雜、多樣。例如從影響細胞的分裂、伸長、分化到影響植物發芽、生根、開花、結實、性別的決定、休眠和脫落等。所以,植物激素對植物的生長發育有重要的調節控製作用。
植物激素的化學結構已為人所知,人工合成的相似物質稱為生長調節劑,如吲哚乙酸;有的還不能人工合成,如赤黴素。目前市場上售出的赤黴素試劑是從赤黴菌的培養過濾物中製取的。這些外加於植物的吲哚乙酸和赤黴素,與植物體自身產生的吲哚乙酸和赤黴素在來源上有所不同,所以作為植物生長調節劑,也有稱為外源植物激素。
最近新確認的植物激素有,多胺,水楊酸類,茉莉酸(酯)等等。
植物體內產生的植物激素有赤黴素、激動素、脫落酸等。現已能人工合成某些類似植物激素作用的物質如2,4-D(2,4-二氯苯酚代乙酚)等。
植物自身產生的、運往其他部位後能調節植物生長發育的微量有機物質稱為植物激素。人工合成的具有植物激素活性的物質稱為植物生長調節劑。已知的植物激素主要有以下5類:生長素、赤黴素、細胞分裂素、脫落酸和乙烯。而油菜素甾醇也逐漸被公認為第六大類植物激素。 1.有關歷史
D.Darwin在1880年研究植物向性運動時,只有各種激素的協調配合,發現植物幼嫩的尖端受單側光照射後產生的一種影響,能傳到莖的伸長區引起彎曲。1928年荷蘭F.W.溫特從燕麥胚芽鞘尖端分離出一種具生理活性的物質,稱為生長素,它正是引起胚芽鞘伸長的物質。1934年荷蘭F.克格爾等從人尿得到生長素的結晶,經鑒定為吲哚乙酸。
2.存在的部位
生長素在低等和高等植物中普遍存在。生長素主要集中在幼嫩、正生長的部位,如禾穀類的胚芽鞘,它的產生具有「自促作用」,雙子葉植物的莖頂端、幼葉、花粉和子房以及正在生長的果實、種子等;衰老器官中含量極少。
用胚芽鞘切段證明植物體內的生長素通常只能從植物的上端向下端運輸,而不能相反。這種運輸方式稱為極性運輸,能以遠快於擴散的速度進行。但從外部施用的生長素類葯劑的運輸方向則隨施用部位和濃度而定,如根部吸收的生長素可隨蒸騰流上升到地上幼嫩部位。
在植物中,則吲哚乙酸通過酶促反應從色氨酸合成。十字花科植物中合成吲哚乙酸的前體為吲哚乙腈,西葫蘆中有相當多的吲哚乙醇,也可轉變為吲哚乙酸。已合成的生長素又可被植物體內的酶或外界的光所分解,因而處於不斷的合成與分解之中。
3.作用
1.低濃度的生長素有促進器官伸長的作用。
從而可減少蒸騰失水。超過最適濃度時由於會導致乙烯產生,生長的促進作用下降,甚至反會轉為抑制。不同器官對生長素的反應不同,根最敏感,芽次之,莖的敏感性最差。生長素能促進細胞伸長的主要原因,在於它能使細胞壁環境酸化、水解酶的活性增加,從而使細胞壁的結構鬆弛、可塑性增加,有利於細胞體積增大。
2.生長素還能促進RNA和蛋白質的合成,促進細胞的分裂與分化。生長素具有兩重性,不僅能促進植物生長,也能抑制植物生長。低濃度的生長素促進植物生長,過高濃度的生長素抑制植物生長。2,4-D曾被用做選擇性除草劑。
4.關於生長素類似物
吲哚乙酸可以人工合成。生產上使用的是人工合成的類似生長素的物質如吲哚丙酸、吲哚丁酸、萘乙酸、2,4-D、4-碘苯氧乙酸等,可用於防止脫落、促進單性結實、疏花疏果、插條生根、防止馬鈴薯發芽等方面。愈傷組織容易生根;反之容易生芽。 1.有關歷史
1926年日本黑澤在水稻惡苗病的研究中,發現感病稻苗的徒長和黃化現象與赤黴菌(Gibberellafujikuroi)有關。1935年藪田和住木從赤黴菌的分泌物中分離出了有生理活性的物質,定名為赤黴素(GA)。從50年代開始,英、美的科學工作者對赤黴素進行了研究,現已從赤黴菌和高等植物中分離出60多種赤黴素,分別被命名為GA1,GA2等。以後從植物中發現有十多種細胞分裂素,赤黴素廣泛存在於菌類、藻類、蕨類、裸子植物及被子植物中。商品生產的赤黴素是GA3、GA4和GA7。GA3又稱赤霉酸,是最早分離、鑒定出來的赤黴素,分子式為C19H22O6。即6-呋喃氨基嘌呤。
2.存在部位
高等植物中的赤黴素主要存在於幼根、幼葉、幼嫩種子和果實等部位。
由甲羥戊酸經貝殼杉烯等中間物合成。後證明其中含有一種能誘導細胞分裂的成分,赤黴素在植物體內運輸時無極性,通常由木質部向上運輸,由韌皮部向下或雙向運輸。
3.作用
赤黴素最顯著的效應是促進植物莖伸長。無合成赤黴素的遺傳基因的矮生品種,用赤黴素處理可以明顯地引起莖稈伸長。赤黴素也促進禾本科植物葉的伸長。在蔬菜生產上,常用赤黴素來提高莖葉用蔬菜的產量。一些需低溫和長日照才能開花的二年生植物,干種子吸水後,用赤黴素處理可以代替低溫作用,使之在第1年開花。赤黴素還可促進果實發育和單性結實,打破塊莖和種子的休眠,促進發芽。干種子吸水後,胚中產生的赤黴素能誘導糊粉層內a-澱粉酶的合成和其他水解酶活性的增加,促使澱粉水解,加速種子發芽。目前在啤酒工業上多用赤黴素促進a-澱粉酶的產生,避免大麥種子由於發芽而造成的大量有機物消耗,從而節約成本。 1.有關歷史
這種物質的發現是從激動素的發現開始的。由韌皮部向下或雙向運輸。1955年美國人F.斯庫格等在煙草髓部組織培養中偶然發現培養基中加入從變質鯡魚精子提取的DNA,可促進煙草愈傷組織強烈生長。後證明其中含有一種能誘導細胞分裂的成分,稱為激動素。第一個天然細胞分裂素是1964年D.S.萊瑟姆等從未成熟的玉米種子中分離出來的玉米素。以後從植物中發現有十多種細胞分裂素,GA2等。都是腺嘌呤的衍生物。
2.存在部位
高等植物細胞分裂素存在於植物的根、葉、種子、果實等部位。根尖合成的細胞分裂素可向上運到莖葉,但在未成熟的果實、種子中也有細胞分裂素形成。細胞分裂素的主要生理作用是促進細胞分裂和防止葉子衰老。綠色植物葉子衰老變黃是由於其中的蛋白質和葉綠素分解;而細胞分裂素可維持蛋白質的合成,從而使葉片保持綠色,延長其壽命。
3.作用
細胞分裂素還可促進芽的分化。在組織培養中當它們的含量大於生長素時,愈傷組織容易生芽;反之容易生根。可用於防止脫落、促進單性結實、疏花疏果、插條生根、防止馬鈴薯發芽等方面。
人工合成的細胞分裂素苄基腺嘌呤常用於防止萵苣、芹菜、甘藍等在貯存期間衰老變質。 1.有關歷史
60年代初美國人F.T.阿迪科特和英國人P.F.韋爾林分別從脫落的棉花幼果和樺樹葉中分離出脫落酸,其分子式為C15H20O4。
2.存在部位
脫落酸存在於植物的葉、休眠芽、成熟種子中。通常在衰老的器官或組織中的含量比在幼嫩部分中的多。
3.作用
抑制細胞分裂,促進葉和果實的衰老和脫落。抑制種子萌發。抑制RNA和蛋白質的合成,從而抑制莖和側芽生長,因此是一種生長抑制劑,有利於細胞體積增大。與赤黴素有拮抗作用。脫落酸通過促進離層的形成而促進葉柄的脫落,還能促進芽和種子休眠。種子中較高的脫落酸含量是種子休眠的主要原因。經層積處理的桃、紅松等種子,芽次之,因其中的脫落酸含量減少而易於萌發。脫落酸也與葉片氣孔的開閉有關,小麥葉片乾旱時,保衛細胞內脫落酸含量增加,氣孔就關閉,從而可減少蒸騰失水。根尖的向重力性運動與脫落酸的分布有關。合成部位:根冠、萎蔫的葉片等。 1.有關歷史
早在20世紀初就發現用煤氣燈照明時有一種氣體能促進綠色檸檬變黃而成熟,這種氣體就是乙烯。但直至60年代初期用氣相層析儀從未成熟的果實中檢測出極微量的乙烯後,乙烯才被列為植物激素。
2.存在部位
乙烯廣泛存在於植物的各種組織、器官中,是由蛋氨酸在供氧充足的條件下轉化而成的。合成部位:植物體各個部位。
3.作用
促進果實成熟,促進器官脫落和衰老。它的產生具有「自促作用」,即乙烯的積累可以刺激更多的乙烯產生。乙烯可以促進RNA和蛋白質的合成,並使細胞膜的通透性增加, 加速呼吸作用。因而果實中乙烯含量增加時,可促進其中有機物質的轉化,加速成熟。乙烯也有促進器官脫落和衰老的作用。用乙烯處理黃化幼苗莖可使莖加粗和葉柄偏上生長。乙烯還可使瓜類植物雌花增多,在植物中,促進橡膠樹、漆樹等排出乳汁。
4.有關運用
乙烯是氣體,在田間應用不方便。一種能釋放乙烯的液體化合物2-氯乙基膦酸(商品名乙烯利)已廣泛應用於果實催熟、棉花採收前脫葉和促進棉鈴開裂吐絮、刺激橡膠乳汁分泌、水稻矮化、增加瓜類雌花及促進菠蘿開花等。 主要有油菜素甾醇、水楊酸、茉莉酸等,目前比較公認的第六大類植物激素是油菜素甾醇(Brassinosteroid)。油菜素甾醇是甾體類激素,與動物甾體激素的作用機理不同。其具有促進細胞伸長和細胞分裂、促進維管分化、促進花粉管伸長而保持雄性育性、加速組織衰老、促進根的橫向發育、頂端優勢的維持、促進種子萌發等生理作用。而目前油菜素甾醇的信號轉導途徑也是目前研究的前沿和熱點之一。

5. 常見的激素

人和動物:胰島素、生長激素、甲狀腺激素、腎上腺素、胰高血糖素、腦啡肽、雄激素、雌激素……
植物:生長素(IAA)、赤黴素(GA)、細胞分裂素(CTK)、脫落酸(ABA)、乙烯(ETH)和油菜素甾醇(BR)

6. 關於乙烯

偶然看見了。。。
熟的放乙烯才多
「 這種簡單氣體有象激素一樣的性能。它能增進果實成熟、脫葉、發芽以及根和苗的生長等。在不良環境中,植物體各部分均大量合成乙烯(ETH)。老化的器官或組織的產量最高。」
是用熟的來催熟生的,乙烯是一種植物生長調節劑

7. 9. 解釋ETH促進果實成熟的原因

最佳答案
1)脫落酸的作用在於抑制RNA和蛋白質的合成,從而抑制莖和側芽生長;乙烯可以促進RNA和蛋白質的合成,使細胞膜的透性增加,加速呼吸作用,加速成熟。這是拮抗作用!
脫落酸抑制細胞分裂,促進葉和果實的衰老和脫落。乙烯(促進果實成熟,)促進器官脫落和衰老。這是協同。

8. 防止落花落果的激素

是生長素
1、生長素IAA(合成代表物為α-萘乙酸)
促進生長;促進插條不定根的形成;對養分的調運作用;誘導維管束分化;維持頂端優勢;誘導雌花分化(但效果不如乙烯)單性結實;促進光合產物的運輸;葉片的擴大和氣孔的開放;抑制花朵脫落。
不同器官的最適濃度不同,莖端最高,芽次之,根最低。極低的濃度就可促進根生長。所以能促進主莖生長的濃度往往對側芽和根生長有抑製作用。
2、赤黴素GA3(代表物為920)
最突出的作用是刺激莖的伸長,明顯增加植物高度而不改變莖間的數目,保花保果。在一定濃度范圍內,隨著濃度的提高,刺激生長的效應增大。
3、細胞分裂素CTK(合成代表物為激動素)
誘導細胞分裂,調節其分化,解除頂端優勢、促進芽的萌動,提高成花率,促進果實發育,抑制葉綠素分解、延遲植物的衰老,提高作物抗寒能力。
4、脫落酸ABA(目前無合成代表物質)
一種抑制生長的植物激素,因能促使葉子脫落而得名。除促使葉子脫落外尚有其他作用,如使芽進入休眠狀態、促使馬鈴薯形成塊莖等。對細胞的延長也有抑製作用。
5、乙烯ETH(合成代表物為乙烯利 )
促進果實成熟;促進根毛生長,打破某些植物種子和芽休眠;促進鳳梨科開花;促進水生植物地下部伸長生長;加速葉片衰老;促進脫落。

9. 植物的休眠與生長的調節激素是什麼怎樣調節的

植物生長激素

植物激素 概念:植物體內合成的,並能從產生之處運送到別處,對植物生長發育產生顯著作用的有機化學物質。

植物激素種類:目前得到普遍公認的有生長素類、赤黴素類、細胞分裂素類、脫落酸和乙烯五大類。除此之外,還有芸薹素、月光素和多胺素等也具有生長物質活性。

植物激素特點:

1、內生的。它是植物生活動過程中的正常代謝產物。也稱為內源激素。

2、能移動的。即從產生部位或合成器官經運輸到靶器官起作用。

3、非營養物質。它在體內含量低,但對代謝過程起極大的調節作用。微克級

一、生長素

(一)發現

生長素是發現最早的植物激素。

1872年波蘭的西斯勒克發現水平根彎麴生長是受重力影響,感應部位在根尖,因而推測根尖向根基傳導刺激性物質。

1880年英國達爾文父子進行了胚芽鞘向光性試驗,證實單側光影響胚芽鞘尖產生刺激並傳遞。

1928年荷蘭人溫特證明胚芽鞘確有物質傳遞,並首先在鞘尖上分離了與生長有關的物質。

1934年荷蘭人郭葛分離純粹的激素,經鑒定為吲哚乙酸,簡稱IAA

(二)分布和運輸

生長素在植物體內分布廣,但主要分布在生長旺盛和幼嫩的部位。如:莖尖、根尖、受精子房等。

運輸存在極性運輸(只能從形態學上端向下端運輸而不能反向運輸)和非極性運輸現象。在莖部是通過韌皮部,胚芽鞘是薄壁細胞,葉片中則是在葉脈。

(三)生理作用

1、促進植物生長 生長素能促進營養器官的伸長,在適宜濃度下對芽、莖、根細胞的伸長有明顯的促進作用。不同器官適宜的激素濃度不一樣,濃度增大反而會起抑製作用。一般莖端最高,芽次之,根最低。

2、生長素還能促進細胞分裂、果實發育和單性結實、保持頂端優勢、愈傷組織的產生,子房膨大和無子果實,插枝生根、器官脫落等有關。

二、赤黴素

(一)發現

1926年日本黑澤英一在研究引起水稻植株徒長的惡苗病時發現的。惡苗病是一種由名為赤黴菌的分泌物引起的水稻苗徒長且葉片發黃,易倒伏,赤黴素因此而得名。

1938年日本藪田貞次提取之,為赤霉酸GA 3。

1959年鑒定出化學結構。

到目前為止,各種植物中均發現有赤黴素存在。根據報道,從低等到高等植物中已分離的赤黴素百餘種,做過化學結構鑒定的已有 50餘種。命名是根據發現前後常以GA1,GA2,GA 3..... 來命名的。

微克級

(二)合成部位和運輸

赤黴素普遍存在於高等植物體內,赤黴素活性最高的部位是植株生長最旺盛的部位。營養芽、幼葉、正在發育的種子和胚胎等含量高,合成也最活躍。成熟或衰老的部位則含量低。

赤黴素在植物體內沒有極性運輸,體內合成後可做雙向運輸,向下運輸通過韌皮部,向上運輸通過木質部隨蒸騰流上升。

(三)生理作用

1、促進細胞分裂和莖的伸長 這是赤黴素最顯著的生理效應,尤其對矮生突變品種的效果特別顯著。原因是矮生品種如玉米和豌豆系單基因突變使植物缺少赤黴素的產生能力。對以葉莖為收獲目的的植物象芹菜、萵苣、韭菜、薴麻茶葉等應用後可以提前收獲並增加產量。且無高濃度抑制問題。(與IAA明顯不同)

2、促進抽薹開花 日照長短和溫度高低是影響一些植物能否開花的制約因子(見12章成化生理)。如芹菜要求低溫和長日照兩個因子均滿足才能抽薹、開花,通過GA3處理,便可誘導開花,替代了植物需要的低溫和長日照。對於花芽已分化的植物,GA具有顯著的促進作用(針葉樹種)。

3、打破休眠 GA能有效的打破許多延存器官(種子、塊莖)的休眠,促進萌發。如當年收獲的馬鈴薯芽眼處於休眠狀態,0.1~1PPM的赤黴素浸泡10~15分鍾,即可打破休眠,一年兩季栽培。

4、促進雄花分化和提高結實率 對雌雄同株異花植物,使用GA後雄花比例增加,如黃瓜。還可提高梨蘋果的座果率,20~50PPM赤黴素噴施可防止棉花脫落。

5、促進單性結實 如用200~500PPM的赤黴素水溶液噴灑開花一周後的果穗,便可形成無子葡萄,無核率達60~90%。

三、細胞分裂素

(一)發現

細胞分裂素是一類具有促進細胞分裂等生理功能的植物生長物質的總稱。 1962~1964 Lethem首次從受精後11~16天的甜玉米灌漿初期的子粒中分離出天然的細胞分裂素,命名為玉米素並鑒定了化學結構。到目前為止已鑒定出幾十種。

(二)運輸和代謝

細胞分裂素普遍存在於旺盛生長的、正在進行分裂的組織或器官、未成熟種子、萌發種子和正在生長的果實。

合成部位為根系。生物合成了解甚少。

運輸無極性,可隨木質部蒸騰流向上輸送。

(三)生理作用

1、促進細胞分裂 細胞分裂過程包括細胞核分裂和細胞質分裂兩方面,通常認為生長素主要促進核的有絲分裂,細胞分裂素促進細胞質的分裂。故缺乏細胞分裂素時易形成多核細胞。

2、促進芽的分化 植物組織培養試驗發現CTK/IAA比例可對愈傷組織根芽分化起到調控作用。高比值有利於芽的分化,反之則有利於根的形成。比值適當愈傷組織保持生長而不分化。

3、促進細胞擴大 用CTK處理四季豆黃花葉的圓片或菜豆、蘿卜的子葉可見細胞明顯地擴大。

4、促進側芽發育,解除頂端優勢 CTK作用於腋芽可促進維管束分化有利於營養物質的運輸,從而促進腋芽的發育。

5、延緩葉片衰老 離體葉片上如塗抹CTK則塗抹部位可在較長時間內保持鮮綠,因而CTK具有延緩葉片衰老的作用。CTK移動性差,塗抹後可從周圍吸取營養,以保持其新鮮度,而使周圍組織迅速衰老。因此CTK若處理水果和鮮花則有保鮮保綠的作用。還有解除需光種子的休眠等作用。

四 脫落酸

一、脫落酸的發現

(一)脫落酸的發現
脫落酸(abscisic acid,ABA)是指能引起芽休眠、葉子脫落和抑制生長等生理作用的植物激素。它是人們在研究植物體內與休眠、脫落和種子萌發等生理過程有關的生長抑制物質時發現的。
1961年劉(W.C.liu)等在研究棉花幼鈴的脫落時,從成熟的干棉殼中分離純化出了促進脫落的物質,並命名這種物質為脫落素(後來阿迪柯特將其稱為脫落素Ⅰ)。1963年大熊和彥和阿迪柯特(K.Ohkuma and F.T.Addicott)等從225kg 4~7天齡的鮮棉鈴中分離純化出了9mg具有高度活性的促進脫落的物質,命名為脫落素Ⅱ(abscisinⅡ)。
在阿迪柯特領導的小組研究棉鈴脫落的同時,英國的韋爾林和康福思)領導的小組正在進行著木本植物休眠的研究。幾乎就在脫落素Ⅱ發現的同時,伊格爾斯(C.F.Eagles)和韋爾林從樺樹葉中提取出了一種能抑制生長並誘導旺盛生長的枝條進入休眠的物質,他們將其命名為休眠素(dormin)。1965年康福思等從28kg秋天的干槭樹葉中得到了260μg的休眠素純結晶,通過與脫落素Ⅱ的分子量、紅外光譜和熔點等的比較鑒定,確定休眠素和脫落素Ⅱ是同一物質。1967年在渥太華召開的第六屆國際生長物質會議上,這種生長調節物質正式被定名為脫落酸。

(二)ABA的結構特點
ABA是以異戊二烯為基本單位的倍半萜羧酸,化學名稱為5-(1′-羥基�2′,6′,6′-三甲基-4′-氧代-2′-環己烯-1′-基)-3-甲基-2-順-4-反-戊二烯酸〔5-(1′-hydroxy-2′,6′,6′-trimethyl-4′-oxo-2′-cyclohexen-1′-yl)-3-methyl-2-cis�-4-trans-pentadienoic acid〕,分子式為C15H20O4,分子量為264.3。ABA環1′位上為不對稱碳原子,故有兩種旋光異構體。植物體內的天然形式主要為右旋ABA即(+)-ABA,又寫作(S)-ABA。

(三) ABA的分布與運輸
脫落酸存在於全部維管植物中,包括被子植物、裸子植物和蕨類植物。苔類和藻類植物中含有一種化學性質與脫落酸相近的生長抑制劑,稱為半月苔酸(lunlaric acid),此外,在某些苔蘚和藻類中也發現存在有ABA。
高等植物各器官和組織中都有脫落酸,其中以將要脫落或進入休眠的器官和組織中較多,在逆境條件下ABA含量會迅速增多。水生植物的ABA含量很低,一般為3~5μg·kg-1;陸生植物含量高些,溫帶谷類作物通常含50~500μg·kg-1�,鱷梨的中果皮與團花種子含量高達10mg·kg-1與11.7mg·kg-1。
脫落酸運輸不具有極性。在菜豆葉柄切段中,14C-脫落酸向基運輸的速度是向頂運輸速度的2倍~3倍。脫落酸主要以游離型的形式運輸,也有部分以脫落酸糖苷的形式運輸。脫落酸在植物體的運輸速度很快,在莖或葉柄中的運輸速率大約是20mm·h-1。

二、脫落酸的生理效應 �

(一) 促進休眠
外用ABA時,可使旺盛生長的枝條停止生長而進入休眠,這是它最初也被稱為"休眠素"的原因。在秋天的短日條件下,葉中甲瓦龍酸合成GA的量減少,而合成的ABA量不斷增加,使芽進入休眠狀態以便越冬。種子休眠與種子中存在脫落酸有關,如桃、薔薇的休眠種子的外種皮中存在脫落酸,所以只有通過層積處理,脫落酸水平降低後,種子才能正常發芽。

(二) 促進氣孔關閉
ABA可引起氣孔關閉,降低蒸騰,這是ABA最重要的生理效應之一。科尼什(K.Cornish,1986)發現水分脅迫下葉片保衛細胞中的ABA含量是正常水分條件下含量的18倍。ABA促使氣孔關閉的原因是它使保衛細胞中的K+外滲,從而使保衛細胞的水勢高於周圍細胞的水勢而失水。ABA還能促進根系的吸水與溢泌速率,增加其向地上部的供水量,因此ABA是植物體內調節蒸騰的激素,也可作為抗蒸騰劑使用。

(三) 抑制生長
ABA能抑制整株植物或離體器官的生長,也能抑制種子的萌發。ABA的抑制效應比植物體內的另一類天然抑制劑--酚要高千倍。酚類物質是通過毒害發揮其抑制效應的,是不可逆的,而ABA的抑制效應則是可逆的,一旦去除ABA,枝條的生長或種子的萌發又會立即開始。

(四)促進脫落
ABA是在研究棉花幼鈴脫落時發現的。ABA促進器官脫落主要是促進了離層的形成。將ABA塗抹於去除葉片的棉花外植體葉柄切口上,幾天後葉柄就開始脫落,此效應十分明顯,已被用於脫落酸的生物檢定。

(五)增加抗逆性
一般來說,乾旱、寒冷、高溫、鹽漬和水澇等逆境都能使植物體內ABA迅速增加,同時抗逆性增強。如ABA可顯著降低高溫對葉綠體超微結構的破壞,增加葉綠體的熱穩定性;ABA可誘導某些酶的重新合成而增加植物的抗冷性、抗澇性和抗鹽性。因此,ABA被稱為應激激素或脅迫激素(stress hormone)。

五 乙烯

一、乙烯的發現

早在上個世紀中葉(1864)就有關於燃氣街燈漏氣會促進附近的樹落葉的報道,但到本世紀初(1901)俄國的植物學家奈劉波(Neljubow)才首先證實是照明氣中的乙烯在起作用,他還發現乙烯能引起黃化豌豆苗的三重反應。第一個發現植物材料能產生一種氣體並對鄰近植物材料的生長產生影響的人是卡曾斯,他發現橘子產生的氣體能催熟同船混裝的香蕉。
雖然1930年以前人們就已認識到乙烯對植物具有多方面的影響,但直到1934年甘恩(Gane)才獲得植物組織確實能產生乙烯的化學證據。
1959年,由於氣相色譜的應用,伯格(S.P.Burg)等測出了未成熟果實中有極少量的乙烯產生,隨著果實的成熟,產生的乙烯量不斷增加。此後幾年,在乙烯的生物化學和生理學研究方面取得了許多成果,並證明高等植物的各個部位都能產生乙烯,還發現乙烯對許多生理過程、包括從種子萌發到衰老的整個過程都起重要的調節作用。1965年在柏格的提議下,乙烯才被公認為是植物的天然激素。
乙烯(ethylene,ET,ETH)是一種不飽和烴,其化學結構為CH2=CH2,是各種植物激素中分子結構最簡單的一種。乙烯在常溫下是氣體,分子量為28,輕於空氣。乙烯在極低濃度(0.01~0.1μl·L-1)時就對植物產生生理效應。種子植物、蕨類、苔蘚、真菌和細菌都可產生乙烯。
二、乙烯在植物體內的分布及運輸

乙烯在植物體內易於移動,並遵循虎克擴散定律。此外,乙烯還可穿過被電擊死了的莖段。這些都證明乙烯的運輸是被動的擴散過程,但其生物合成過程一定要在具有完整膜結構的活細胞中才能進行。
一般情況下,乙烯就在合成部位起作用。乙烯的前體ACC可溶於水溶液,因而推測ACC可能是乙烯在植物體內遠距離運輸的形式。

三、乙烯的生理效應

1、改變生長習性
乙烯對植物生長的典型效應是:抑制莖的伸長生長、促進莖或根的橫向增粗及莖的橫向生長(即使莖失去負向重力性),這就是乙烯所特有的"三重反應"乙烯促使莖橫向生長是由於它引起偏上生長所造成的。所謂偏上生長,是指器官的上部生長速度快於下部的現象。乙烯對莖與葉柄都有偏上生長的作用,從而造成了莖橫生和葉下垂。

2、促進成熟
催熟是乙烯最主要和最顯著的效應,因此乙烯也稱為催熟激素。乙烯對果實成熟、棉鈴開裂、水稻的灌漿與成熟都有顯著的效果。在實際生活中我們知道,一旦箱里出現了一隻爛蘋果,如不立即除去,它會很快使整個一箱蘋果都爛掉。這是由於腐爛蘋果產生的乙烯比正常蘋果的多,觸發了附近的蘋果也大量產生乙烯,使箱內乙烯的濃度在較短時間內劇增,誘導呼吸躍變,加快蘋果完熟和貯藏物質消耗的緣故。又如柿子,即使在樹上已成熟,但仍很澀口,不能食用,只有經過後熟過程後才能食用。由於乙烯是氣體,易擴散,故散放的柿子後熟過程很慢,放置十天半月後仍難食用。若將容器密閉(如用塑料袋封裝),果實產生的乙烯就不會擴散掉,再加上自身催化作用,後熟過程加快,一般5天後就可食用了。

3、促進脫落
乙烯是控制葉片脫落的主要激素。這是因為乙烯能促進細胞壁降解酶--纖維素酶的合辦成並且控制纖維素酶由原生質體釋放到細胞壁中,從而促進細胞衰老和細胞壁的分解,引起離區近莖側的細胞膨脹,從而迫使葉片、花或果實機械地脫離。

4、促進開花和雌花分化 �
乙烯可促進菠蘿和其它一些植物開花,還可改變花的性別,促進黃瓜雌花分化,並使雌、雄異花同株的雌花著生節位下降。乙烯在這方面的效應與IAA相似,而與GA相反,現在知道IAA增加雌花分化就是由於IAA誘導產生乙烯的結果。

5、乙烯的其它效應
乙烯還可誘導插枝不定根的形成,促進根的生長和分化,打破種子和芽的休眠,誘導次生物質(如橡膠樹的乳膠)的分泌等。

10. 什麼是三重反應

植物生理學中,為乙烯的一種特有反應;在醫學中,為正常皮膚注射組胺產生的現象,又稱為三聯反應。具體解釋如下:

在植物生理學上,三重反應抑制莖的伸長生長;促進上胚軸的橫向加粗;莖失去負向地性而產生橫向生長。這是乙烯特有的反應,可用於乙烯的生物鑒定。

在醫學中,三重反應是指組胺注入皮內,首先因皮膚毛細血管擴張,在注射處出現紅斑,繼而因血管通透性增加,在紅斑部位形成一小腫塊丘疹,最後通過軸突反射使臨近小動脈擴張,在小腫塊四周出現紅暈。這是一種正常皮膚才會出現的現象,可以用於麻風病的診斷。



(10)ETH是乙烯嗎擴展閱讀:

三重反應的其它相關介紹:

19世紀中葉,人們發現照明氣體的泄漏會影響植物的生長發育。1901年,俄羅斯學者尼魯博夫證實了乙烯在照明氣體中的作用,並發現了植物對乙烯的「三重反應」。

幾乎所有高等植物都會產生微量乙烯。乾旱、淹水、極端溫度、化學損傷、機械損傷等都能刺激植物體內乙烯的增加,稱為逆境乙烯,加速植物衰老和脫落。乙烯在種子萌發、脫落和衰老過程中含量較高。高濃度生長素促進乙烯生成。乙烯抑制生長素的合成和運輸。

熱點內容
日本eth最後行情 發布:2025-07-12 07:29:28 瀏覽:289
區塊鏈理念與融合 發布:2025-07-12 07:22:59 瀏覽:585
usdt交易所賬號被凍結 發布:2025-07-12 07:16:48 瀏覽:129
shib幣發行平台 發布:2025-07-12 07:16:37 瀏覽:905
聯通怎麼購買合約機 發布:2025-07-12 07:12:31 瀏覽:722
xmr多礦池配置 發布:2025-07-12 07:10:21 瀏覽:532
比特幣國外交易提現 發布:2025-07-12 07:05:13 瀏覽:749
區塊鏈財富第九波 發布:2025-07-12 06:28:23 瀏覽:964
中國數字貨幣發展新機遇 發布:2025-07-12 06:28:19 瀏覽:464
幣圈大俠行情分析 發布:2025-07-12 06:27:36 瀏覽:352