ltc4413應用電路
❶ 對電池有興趣的朋友來2
C是電池的容量。
鋰離子電池及其充電器
-- 隨著攜帶型電子產品的迅猛發展及電池技術的進步,開發出多種新型電池,其中發展最快的是可充電電池。在鎳鎘電池後相繼開發出鎳氫電池、鋰離子電池及最新發展的鋰聚合物(Li-Polymer)電池。鋰離子電池與鎳鎘電池及鎳氫電池在主要性能上的比較如表1所示。
表1:鋰離子電池/鎳鎘電池/鎳氫電池主要性能比較
參數/電池種類 鋰離子 鎳鎘 鎳氫
單位重量能量密度(W-Hr/kg) 90 40 60
額定電壓(V) 3.6 1.2 1.2
充電次數 1000 1000 800
自放電率(%/月) 6 15 20
---- 由表1可看出鋰離子電池的單位重量能量密度及單位體積能量密度都是最高的,即同樣的電池重量、同樣的電池體積,在同樣的負載電流時,鋰離子電池的兩次充電的時間間隔是最長的;並且它的自放電率最低,也無記憶效應。由於有這些優點,雖然目前它的價格較貴,但仍然是靈巧型攜帶型產品,如手機、PDA、掌上電腦等產品的最佳選擇。
---- 鋰離子電池比較"嬌氣",在使用不當時(過充、過溫、過放)會造成損害或報廢。因此各半導體器件公司紛紛開發出各種安全、高效的鋰離子電池充電器IC及鋰離子電池保護器IC,這保證了電池充電、放電的安全。MAXIM公司、TI公司、LT公司、ADI公司、MICREL公司、沛亨公司等近年來開發了多種新型鋰離子電池充電器IC,其中沛亨公司生產了系列鋰離子電池保護器IC;連過去不生產充電器的Telcom公司在2000年9月也開發出一種新型鋰離子電池充電器IC。
鋰離子電池基本知識
---- 鋰離子電池有各種形狀(圓柱形、長方形等)以適合不同產品的需要,其容量一般有幾百毫安時到幾安時。另外,有將幾個鋰離子電池串聯在一起,並與電池保護器封裝在一起的電池組。
---- 鋰離子電池的額定電壓為3.6V(有的公司的產品為3.7V)。電池充滿電時的電壓(稱為終止充電電壓)與電池的陽極材料有關:陽極材料為石墨時為4.2V;陽極材料為焦炭時為4.1V。另外,它們的內阻也不相同,焦炭陽極的略大,故其放電曲線也略有差別,如圖1所示。鋰離子電池終止放電電壓為2.5V(各電池製造廠的參數略有不同)。如果鋰離子電池在使用過程中電壓已降到2.5V後還繼續使用,則稱為過放電(或過放),對電池有損害。
---- 電池的容量C以mAh或Ah表示。它可以用來估算工作時間。例如,C=1600mAh的鋰離子電池若工作電流為400mA,則可估算工作時間約為4小時。實際上電池有自放電損耗,電池存放時間長則會影響使用時間。另外,鋰離子電池不適合大電流放電,過大的電流放電會降低放電的時間,如圖2所示。一種容量為3Ah的鋰離子電池,在0.75A電流放電時,工作時間為4小時。若以2A電流放電時,本應工作1.5小時,但實際為1.25小時(相當於2.5Ah了);若以3A電流放電,本應工作1小時,但實際為0.6小時(相當於1.8Ah了)。這是因為大電流放電時,內部有較大的損耗的緣故。因此,不同容量的電池由電池製造廠給出允許最大的放電電流值。
鋰離子電池充電要求
---- 鋰離子電池需要精密的充電電路以保證充電的安全及充滿,另外也要使用方便及低價。鋰離子電池充電的需求有:終止充電電壓精度在額定值的1%之內(過壓充電可能對鋰離子電池造成永久性損壞);鋰離子電池的充電率(充電電流)應根據電池生產廠的建議選用。雖然某些電池充電率可達2C(C為電池的容量),但常用的充電率為(0.5~1)C。採用0.5C充電率時,因充電過程的電化學反應會產生熱,有一定的能量損失;另外鋰離子電池充電並非全部採用恆流充電,還有恆壓充電,所以實際充電時間為2.5小時左右;鋰離子電池充電的溫度在0℃~60℃范圍。如果充電電流過大會產生溫度過高,不僅會損壞電池並可能引起爆炸。因此在大電流充電時,需要對電池進行溫度檢測,並且在超過設定充電溫度時能停止充電以保證安全。另外,充電器電路中有設定的限流電阻,保證充電電流不超過設定的限制電流。
---- 鋰離子電池終止放電電壓為2.5V。若電池中沒有電池保護器或電子產品中沒有電池終止電壓檢測電路,則可能造成過放(低於2.5V),嚴重的過放會造成電池的失效。
---- 完善的充電器可對過放的電池進行挽救修復,即在充電前進行預處理。充電前檢測電池的電壓:若電池電壓大於2.5V,則按正常方式充電;若電池電壓低於2.5V,則用小電流(約1/10C的電流)充電,充到2.5V後再按正常方式充電。這種預充電的方式稱為預處理。
---- 目前的充電器常採用三段充電法,即預處理、恆流充電(快充)、恆壓充電(充滿)。正常充電(即電池電壓大於2.5V)的充電特性如圖3所示(充4.2V鋰離子電池)。開始以設定的恆流充電,電池電壓以較高的斜率增長,在充電過程中斜率逐步降低,充到接近4.2V時,恆流充電階段結束。接著以4.2V恆壓充電,在恆壓階段充電時,電壓幾乎不變(或稍有增加),充電電流不斷下降。當充電電流下降到1/10C時,表示電池已充滿,終止充電(圖3中電池容量為1600mAh,充電率為0.5C,充電電流為800mA,1/10C為80mA)。有的充電器在充電電流降到某一值時,啟動定時器,經一段定時後,結束充電。
---- 鋰離子電池的充電過程與鎳鎘、鎳氫電池充電過程是完全不同的(鎳鎘、鎳氫電池的充電特性如圖4所示)。因此,鋰離子電池不能借用一般的鎳鎘、鎳氫電池充電器來充電。一般的通用充電器(既可充鎳鎘、鎳氫電池,也能充鋰離子電池)的性能不如鋰離子電池專用充電器好。即使是鋰離子電池充電器,還必須分清楚是充4.1V的還是充4.2V的,不要搞錯!
充電器IC的組成
---- 為了滿足上述充電的要求,性能良好的鋰離子電池充電器IC內部由下述幾部分組成:電源電路(它由開關型或線性電源組成),包括恆流源(其精度一般為5%左右)及恆壓源(0.75%~1%精度);電流限制電路(可由用戶外設一個電流檢測電阻來設定);電池電壓檢測電路;電池溫度檢測電路;充電器指示電路(一般用LED來指示);安全定時器電路;基準電壓源(高精度)、多個電壓比較器及邏輯控制電路、關閉控制電路等。
---- 充電器IC根據電源電路不同也分成充電器IC及充電器控制IC兩種,即調整管或開關管做在IC內的為充電器IC,調整管或開關管不做在IC內的為充電器控制器。
---- 目前,充電電流較大的(1A以上)、充電電池數量較多(3~4個鋰離子電池)的充電器,為提高充電效率,往往採用開關型降壓式DC/DC變換器作電源,其效率一般高於90%,並且將開關管由外設MOSFET來擔任。這不僅可減小充電器控制器的矽片尺寸及簡化製造工藝,並且可以減少大電流產生的熱量對控制器IC的影響。這類充電控制器IC的功能較完善、性能較好。例如,MAXIM公司2000年生產的MAX1737、MAX1757、MAX1758。其充電電流可編程,最大充電電流可達1.5A(MAX1757/1758)可充3~4節鋰離子電池。
---- 若充電器的充電電流較小(≤0.5C),充單節鋰離子電池的場合,往往採用低壓差線性電源組成恆流源及恆壓源(或門控式脈沖充電),效率雖低一些,但電路較簡單、外圍元件少、成本較低。
---- 這兩年來,開發出不少8引腳的充電器新器件,如MAX1679、bq2057、LTC1730、LTC1731-4.1及LTC1731-4.2、TC3827等;還有一些6引腳的器件,如ADP3820、MAX1736;甚至開發出簡易型的3引腳充電器IC:MIC79050-4.2BS。
---- 這些充電器往往採用外接限流的插頭式電源,或稱牆式適配器(wall adapter或wall cube)。它內部有降壓變壓器、全波整流器及濾波電容組成的不穩壓的AC/DC變換器。利用它的限流作用作快速充電,則充電器電路可大大簡化。
---- 這些充電器IC自身尺寸極小(8引腳SO或μMAX封裝或6引腳SOT-23封裝),外圍元件較少,佔用印製板面積極小,有不少充電器電路可裝入產品中,如LT1731的充電器電路及實際尺寸如圖5所示。另外,由MAX1679組成的充電路如圖6所示,它可以裝入手機中。它的快充電流由外接插頭式電源決定,在最後採用脈沖方式充滿,其發熱量極小。有些充電器省掉測溫電路及外接NTC熱敏電阻,使電路進一步簡化。
---- 3引腳的MIC79050-4.2BS實質上是一個精密低壓差線性穩壓電源,其輸出電壓為4.2V,電壓精度可達 ±0.75%(在0℃~+60℃),其輸出電壓溫度系數為40ppm/℃;內部有電流限制電路(限制電流為750mA),並有過熱關閉保護電路,其結構框圖如圖7所示。充電電流靠有限流作用的插頭式電源提供,終止電壓靠4.2V精密穩壓器保證,不會過充。
---- 另外,有些充電器IC在設計時需與μC(或μP)結合使用,組成電路簡單性較好的充電器,利用μC或 μP對充電過程及一些參數進行控制,即採用軟體來完成一些原由硬體來完成的工作,採用廉價的8位μC或μP,成本也不高。另外充電器IC廠在網上提供的有關充電器的編程資料,給這種新型充電器開發帶來了方便。例如,Telcom的TC3827充電控制器IC與μC結合的應用電路圖如圖8所示。圖中RSENSE為限流電阻(可設定限制電流),外接PMOS為充電開關,LED為充電指示器。其中MODE、IMON、SHDN三引腳與μC介面,分別控制其充電模式、充電電流(通過RSENSE上的電壓來檢測充電電流)及關閉控制。
典型充電器IC
---- 近年來,各半導體器件廠開發出不少鋰離子充電器或控制器IC。這里摘錄一些公司新產品(1999~2000年)列於表2,供參考。需要更詳細資料可直接訪問生產廠的網址。表2中各型號的字頭:MAX為MAXIM公司、ADP為ADI公司、bq為TI公司、MIC為MICREL公司、TC為Telcom公司、LTC為LT公司。
❷ 關於大功率LED恆流驅動電路
您好!
大功率LED驅動電路有:
AMC7135
ZXSC310
LTC3454
TPS63000
LT3760
LT3785
LT1371
LM3421
MAX16838
資料來源於《無線電》2010年第3期。
❸ 采樣電阻的應用場合有哪些該怎麼選型呢
采樣電阻基於磁場的檢測方法(以電流互感器和霍爾感測器為代表)采樣電阻具有良好的隔離和較低的功率損耗等優點,因此主要在驅動技術和大電流領域被電子工程師們選用,但它的缺點是體積較大,補償特性、線性以及溫度特性不理想。對於電流檢測的原理,目前主要有兩種的檢測:基於磁場的檢測方法和基於分流器的檢測方法。 由於小體積的高精度低阻值采樣電阻器的實用化,以及數據採集和處理器性能的大幅度提升,已經導致傳統的基於分流器的電流檢測方法的技術革新,並使新的應用成為可能。
然而,電路板上的取樣端子和采樣電阻組成了一個環狀結構,為了避免其間因電流產生的磁場和外圍磁場而形成的感應電壓,需要特別強調要使取樣的信號線形成的區域越小越好,最理想的是微帶線設計。采樣電阻又電流檢測電阻,也有人翻譯為電流感測電阻器,英語翻譯為current sensing resistor,采樣電阻阻值一般小於1歐姆,我見過的最小阻值是0.1毫歐,常用用的有0.025歐,0.028歐,0.05歐等。原理:將采樣電阻串入電路中,根據歐姆定律,當被測電流流過電阻時,電阻兩端的電壓與電流成正比,轉換為電壓型號進行測量。
低電感:在當今的很多應用中需要測量和控制高頻電流,分流器的寄生電感參數也得到了大幅改善。表面貼裝電阻器的特殊的低電感平面設計和合金材料的抗磁特性,金屬底板,以及四引線連接都有效降低了電阻器的寄生電感。
采樣電阻
采樣電阻熱電動勢,當溫度輕微升高或者降低時,在不同材料的接觸面上會產生熱電勢,這種效應對低阻值電阻的影響非常重要,盡管通常情況下熱電勢數值非常小,但微伏級的熱電勢能夠嚴重地影響測量結果。長期穩定性:對於任何感測器來說,長期穩定性都非常重要。甚至在使用了一些年後,人們都希望還能維持早期的精度。這就意味著電阻材料在壽命周期內一定要抗腐蝕,並且合金成分不能改變。端子連接:在低阻值電阻中,端子的阻值和溫度系數的影響往往是不能忽略的。在PCB layout也要注意采樣電阻的走線不能太長,太細。我在使用linear LTC4100做充電管理時,版PCB由於忽略了這一點,走線有點長,導致充電電流無法達到我的設定值,後來查了很久才發現是這個問題。
采樣電阻應用場合:電源管理(如電源監控)。開關電源SMPS(DC-DC, 充電管理,電源適配器)。如Linear的4100系列鋰電池充電電路,採用采樣電阻控制充電電流。
選型:常見生產廠家:Vishay, IRC,Ohmite, Bourns, 國產的主要有國巨等。PS:電子元件技術網的選型工具也比較好用。采樣電阻都是精密電阻,精度都在1%以內,更好要求時採用0.05%,甚至0.01%,功率有0.25W,0.5W,1W等。 阻值:和普通電阻一樣,標准阻值為非連續。表示方法:毫歐電阻可表示為: R001 = 0.001R。25毫歐電阻可表示為: R025 = 0.025R。100毫歐電阻可表示為: R100 = 0.1R。封裝:常見的封裝有1206/2010/2512。 溫度系數:是錳鎳銅合金電阻的典型溫度特性曲線,溫度系數TCR單位為ppm/K,在20或25℃ 時,TCR=[R(T)-R(T0)]/R(T0) ×(T-T0),對於溫度系數的定義,製造商標明溫度的上限是必要的,舉例說明在+20 -+60℃的溫度范圍內,測量系統經常選用TCR為幾百個ppm/K 的低阻值的厚膜電阻器,比如TCR 為200 ppm/K的電阻器的溫度特性,即使在如此小的范圍內,+50℃的溫度變化就足以導致阻值變化超過1%。
❹ LTC1044負電壓轉換器什麼原理,什麼用
簡易的頻率到電壓轉換器
簡易的頻率到電壓轉換器 簡易的頻率電壓轉換器,在0到3.4kHz范圍內提供1mV/Hz信號輸出 如圖是一個簡易的頻率到電壓轉換器,它使用了開關電容式電壓轉換器。該電路的輸 出電壓符合下面的等式,此處K=2.44(對於LTC1044),f為輸入頻率。 Vout=K×f×R1×C1 當電源電壓為+5V時,Vout的最大值接近3.4V。在使用該電路時,應重視電源的穩壓和濾 波。按圖所示電路的參數值,在0到3.4kHz的范圍內輸出信號以1mV/Hz變化。你可以通過 選擇C2的值來達到較理想的響應時間和脈動。在LTC1044的7腳輸入的最大頻率約為100k Hz。你也可以用7660等元件替換IC1,但溫度穩定性不好,且一定程度上有不同的K值。
❺ 鋰電池充電管理IC
鋰電池充電管理IC:
AP5056是一款完整的單節鋰離子電池採用恆定電流/恆定電壓線性充電器。其底部帶有散熱片的SOP8封裝與較少的外部元件數目使得AP5056成為攜帶型應用的理想選擇。AP5056可以適合USB 電源和適配器電源工作。
由於採用了內部PMOSFET架構,加上防倒充電路,所以不需要外部隔離二極體。熱反饋可對充電電流進行自動調節,以便在大功率操作或高環境溫度條件下對晶元溫度加以限制。充電電壓固定於4.2V,而充電電流可通過一個電阻器進行外部設置。當充電電流在達到最終浮充電壓之後降至設定值1/10 時,AP5056將自動終止充電循環。
當輸入電壓(交流適配器或USB 電源)被拿掉時,AP5056自動進入一個低電流狀態,將電池漏電流降至2uA以下。AP5056在有電源時也可置於停機模式,將供電電流降至50uA。
AP5056的其他特點包括電池溫度檢測、欠壓閉鎖、自動再充電和兩個用於指示充電、結束的LED狀態引腳。
❻ IC :LTC4411有什麼作用
LTC4411, 凌特公司(Linear Technology)推出的低損耗 Power Path控制器, 採用 ThinSOT™ 封裝的 2.6A 低損耗理想二極體。
特點:
PowerPath™「或」二極體的低損耗替代方案
小的已調節正向電壓 (28mV)
2.6A 最大正向電流
低正向接通電阻 (最大值為 140mΩ)
低反向漏電流 (<1µA)
2.6V 至 5.5V 工作電壓范圍
內部電流限值保護
內部熱保護
無需外部有源組件
LTC4412 的引腳兼容型單片替代器件
低靜態電流 (40µA)
扁平 (1mm) 的 5 引腳 SOT-23 封裝。
典型應用:
蜂窩電話
手持式計算器
數碼相機
USB 外設
不間斷電源
邏輯控制型電源開關。
❼ 電路設計中需要一個整流晶元,可以將交流信號轉化為直流信號。8個管腳的。求大神。。
如果你是要進行電源整流,那麼用整流橋,但是整流橋一般都是4腳的。
如果你是要進行交流信號電壓到與之相對應的有效值直流電壓之間的轉換,那麼應該用真有效值轉換器。
真有效值轉換器中8腳的有以下型號:
LTC1966、LTC1967、LCT1968、AD736、AD737。
❽ 這個防反接電路的原理
大概原理是這樣,這是集成運放構成的反電壓保護電路,不反接第一個集成運放輸出為U-<U+=Uo=+UoM高電平,對應的三極體導通,第二個集成運放U+<U-=Uo=-UoM低電平對應的Q1導通,反接側輸出狀態跟上面相反。
假如電源出現故障或短路,那麼 ltc4357 確保在 0.5us 內迅速斷開,以最大限度地減小反向瞬態電流。ltc4357 還可以用來保護電源免受反向電壓影響,為下游電子組件提供輸進反向保護。另外,該器件可以利用一個熱插拔(hot swap)控制器和保持電容器進行配置,以在輸進功率損失之後提供一段時間的輸進電源保持。這樣一來,在出現短暫的輸進電源中斷後,無需復位或重新啟動就能實現系統連續工作。
❾ 如何為越來越小的助聽器設計無線充電方案
助聽器是由電感式無線功率傳輸(WPT)系統,由發送器電路、發送線圈、接收線圈和接收器電路組成。接收到的功率取決於許多因素:發送功率、發送(Tx)線圈和接收(Rx)線圈之間的耦合(距離、校準、實體特性與鐵氧體等)、附近的無關金屬物體以及元件容限等。在無線功率傳輸系統中,功率是採用交變磁場而發送的。在發送線圈中的交流(AC)電流產生一個磁場。當接收線圈被置於該磁場時,在接收線圈中將會感應一個AC電流。在接收線圈上感應的AC電流是在發送器上施加的AC電流以及發送線圈和接收線圈之間磁耦合的一個函數。採用諧振能夠改善整個空氣間隙的功率傳輸距離,其方式是連接諧振電容器與接收線圈,以產生一個調諧頻率與發送線圈
AC 電流頻率相同的 LC 諧振電路。構造長久以來,建立一個WPT充電系統需要復雜的解決方案:電池充電器、降壓型開關穩壓器和WPT電路。這種復雜的解決方案往往尺寸很大,也難以設計。新型無線電源接收器和電池充電器解決上述問題的無線電源接收器和充電器解決方案需要具備以下特點:無線充電:無需頻繁更換電池,能夠構成密封、防水和更堅固的助聽器單片式解決方案:小型整合式接收器和WPT電路都在同一個IC中溫度補償充電:能夠安全地為鎳氫電池充電鋅-空氣電池檢測:助聽器可以用鎳氫電池或鋅-空氣電池供電。可充電的鎳氫電池在正常情況下使用,而在用戶忘記為鎳氫電池充電的緊急情況下,可以安全地插入不可充電的鋅-空氣電池,因而不至於造成損壞。極性反置檢測:在電池方向插反時停止充電充電狀態指示:用戶可以知道何時該為電池充電充電安全計時器:為電池提供安全保護溫度過高/過低檢測:如果電池溫度達到極端值,就暫停充電整體尺寸小巧的解決方案為了滿足這些具體的需求,ADI推出了一款30mW的低功率無線充電器LTC4123。該元件具有為鎳氫電池設計的恆定電流/恆定電壓線性充電器,例如Varta的PowerOne
ACCU
Plus系列電池。通過外部LC諧振電路連接至該無線接收器,使其能夠以無線方式從發送線圈產生的交變磁場接收功率。整合的電源管理電路將耦合的AC電流轉換成為電池充電所需的直流(DC)電流。完全密封的產品也可以採用該元件進行無線充電,而且免除了不斷地更換鋅-空氣主電池的必要。不過,針對需要靈活地以多種電池化學組成運作的產品而言,LTC4123的鋅-空氣電池檢測功能可讓相同的應用電路在可充電鎳氫電池和鋅-空氣主電池之間互換運作。這兩種類型的電池都可以直接為助聽器ASIC供電,而無需額外的電壓轉換。相形之下,除了為ASIC供電的無線電池充電功能,3.7V鋰離子電池還需要一個降壓型穩壓器。通過該無線充電器,能夠為來自接收線圈的AC功率整流,還可以接受2.2V至5V輸入,以便為全功能恆定電流/恆定電壓電池充電器供電。充電器的功能包括高達25mA的可編程充電電流、具有±1%准確度的溫度補償1.5V單節電池充電電壓、充電狀態指示以及內建的安全充電終止計時器。溫度補償的充電電壓保護鎳氫電池,並防止過度充電。當電池插入時的極性反置時,還可防止該元件進行充電,如果溫度過高或過低,就會暫停充電。低功率無線充電器實現無線功率傳輸電感性無線功率傳輸系統由發送器電路、發送線圈、接收器電路和接收線圈組成。在這一類系統中,低功率無線充電器LTC4123構成了接收器電路的基礎;接收線圈可被整合至接收器電路的印刷電路板(PCB)中。連接至ACIN接腳的外部LC諧振電路讓該元件可從發送線圈產生的交變磁場無線接收功率,並可搭配如LTC6990
TimerBlox壓控晶體振盪器作為發送器
❿ LTC1043到底是什麼東西什麼開關電容,開關電容濾波器1043的工作原理是什麼懂的
我看過英文的DATA SHEET,也仔細看過應用線路,實際上就是電容。不過這個電容有以下特殊之處。
1、電容數量有幾個,容值為1uF。
2、每個電容的兩端接可以接在電路中去,也可以斷開不連接到應用線路中。
3、斷開連接可以受內部振盪時鍾或外部時鍾信號進行頻率控制。
4、帶有120dB共模抑制比。
5、由於有自動開關,開關頻率可受控,開關能有斷續比脈沖,並且能充電平衡功效,因此用作采樣采樣保持、壓控振盪、V-F電壓頻率變換、F-V頻率電壓變換比普通電容有更好的一致性、可控性,防共模干擾能力更強。
凡是1uF無極性電容能做的事情,它都做,例如在低頻時候可以做的微分積分反相變換電路,不過他共有幾個,因此你只用其中的一個電容,或只用於普通的耦合濾波電路,那肯定是高射炮打蚊子。它主要用於精密儀表高精度放大,還有頻率-電壓相互轉換電路,還有需要輸入多個不同輸入端,或者做成4個不同放大倍數的放大器時,就不需要通過單片機,再加模擬開關來完成。
在PROTEUS以及其他模擬電路中,相當於單片機的幾個輸出端、加多個模擬開關、幾個1微法無極性電容。單一的分離元器件是不能同他相提並論的。