ltc感應
1. 特斯拉線圈問題
http://www.geekfans.com/article-1845-1.html
固態特斯拉線圈製作教程
對與大多數玩了SGTC的人來說都想玩更高級的SSTC/DRSSTC,但是許多人在這是就會遇到困難。
特斯拉線圈介紹
特斯拉線圈又叫泰斯拉線圈,因為這是從"Tesla"這個英文名直接音譯過來的。這是一種分布參數高頻共振變壓器,可以獲得上百萬伏的高頻電壓。特斯拉線圈的原理是使用變壓器使普通電壓升壓,然後經由兩極線圈,從放電終端放電的設備。通俗一點說,它是一個人工閃電製造器。在世界各地都有特斯拉線圈的愛好者,他們做出了各種各樣的設備,製造出了眩目的人工閃電。
諧振定義:
在物理學里,有一個概念叫共振:當策動力的頻率和系統的固有頻率相等時,系統受迫振動的振幅最大,這種現象叫共振。電路里的諧振其實也是這個意思:當電路的激勵的頻率等於電路的固有頻率時,電路的電磁振盪的振幅也將達到峰值。實際上,共振和諧振表達的是同樣一種現象。這種具有相同實質的現象在不同的領域里有不同的叫法而已。(說個易懂的,當兩個振動頻率相等的物體,一個發生振動時,引起另一個振動的現象叫做共振,在電學中,兩個等頻振盪電路的共振現象,叫做諧振。)
電磁振盪LC迴路
(L:電感,C:電容)
電磁振盪LC迴路能產生大小和方向都都作周期發生變化的電流叫振盪電流。能產生振盪電流的電路叫振盪電路。其中最簡單的振盪電路叫LC迴路。一個不計電阻的LC電路,就可以實現電磁振盪,故也稱LC振盪電路。LC振盪電路的物理模型滿足下列條件:①整個電路的電阻R=0(包括線圈、導線),從能量角度看沒有其它形式的能向內能轉化,即熱損耗為零.②電感線圈L集中了全部電路的電感,電容器C集中了全部電路的電容,無潛布電容存在.③LC振盪電路在發生電磁振盪時不向外界空間輻射電磁波,是嚴格意義上的閉合電路,LC電路內部只發生線圈磁場能與電容器電場能之間的相互轉化,即便是電容器內產生的變化電場,線圈內產生的變化磁場也沒有按麥克斯韋的電磁場理論激發相應的磁場和電場,向周圍空間輻射電磁波振盪電流是一種頻率很高的交變電流,它無法用線圈在磁場中轉動產生,只能是由振盪電路產生。其工作流程為:充電完畢(放電開始):電場能達到最大,磁場能為零,迴路中感應電流i=0。放電完畢(充電開始):電場能為零,磁場能達到最大,迴路中感應電流達到最大。充電過程:電場能在增加,磁場能在減小,迴路中電流在減小,電容器上電量在增加。從能量看:磁場能在向電場能轉化。放電過程:電場能在減少,磁場能在增加,迴路中電流在增加,電容器上的電量在減少。從能量看:電場能在向磁場能轉化。在振盪電路中產生振盪電流的過程中,電容器極板上的電荷,通過線圈的電流,以及跟電流和電荷相聯系的磁場和電場都發生周期性變化,這種現象叫電磁振盪。
在這里我給那些新人們先講講特斯拉線圈的分類:
SGTC(Spark Gap Tesla Coil=火花隙特斯拉線圈(特斯拉本人發明的那種)
-分枝:SISGTC(Sidac-IGBT SGTC)=以觸發二極體-IGBT替換火花隙的特斯拉線圈
SSTC(Solid State Tesla Coil=固態特斯拉線圈(這里主要講解的那種)
-分枝:(本文主要講DRSSTC,由於SSTC的原理相對簡單,在看完之後就會明白的)
ISSTC(Interrupted SSTC)=帶滅弧固態特斯拉線圈
OLTC(Off Line Tesla coil)=離線式特斯拉線圈
Class-E SSTC=戊類功放式固態特斯拉線圈
DRSSTC(Dual Resonant SSTC)=雙諧振固態特斯拉線圈
-分枝:QCWDRSSTC(Quasi Continuous Wave DRSSTC)=准連續波雙諧振
固態特斯拉線圈
CWDRSSTC(Continuous Wave DRSSTC)=連續波雙諧振固態特斯拉
線圈
VTTC(Vacuum Tube Tesla Coil)=真空管特斯拉線圈
-分枝:SSVC(Solid State Valve Coil)=固態-真空管特斯拉線圈
SGTC:傳統的火花隙特斯拉線圈,噪音大,效率低,壽命短,這里就不做過多介紹。
SSTC:現代電子愛好者們根據特斯拉線圈的本質原理,發明了固態特斯拉線圈(SSTC),它具有低噪音、高效率、壽命長的特點,因而得到了很好的發展。固態特斯拉線圈不僅可以產生炫目的閃電,還可以利用電弧演奏音樂!因此特斯拉線圈除了應用於高壓領域外,也不失為一件很好的藝術品。
固態特斯拉線圈的原理是:通過驅動電路,將市電(220VAC 50Hz)轉換為高頻交流電,通過初級線圈轉化為高頻磁場,當磁場振盪頻率和由一端接地的次級線圈和放電端形成的LC體系的固有頻率一致時,發生諧振,此時次級線圈將大量電荷送入放電端,使得放電端電壓升的很高,從而形成閃電。對於固態特斯拉線圈,他沒有電容組,只有驅動電路、初級線圈、次級線圈和放電端,他是依靠驅動電路來產生高頻電流,送入初級線圈產生高頻磁場;而傳統的火花隙特斯拉線圈則是依靠打火開關接通/斷開,來激發初級線圈和電容組振盪,產生高頻磁場,這是這兩者的區別!
總結:SSTC的工作方式是驅動板產生一個震盪電流與次級線圈相同這是就會諧振通過初級耦合將能量傳遞給次級。因此sstc的驅動板可以簡單地看成一個震盪信號發生器。
DRSSTC:由於固態特斯拉線圈驅動電路的負載是一個初級線圈,為感性負載,其功率因數低,能量利用率較低,同時初級線圈電流瞬時值也不夠大,所以導致固態特斯拉線圈產生的閃電壯觀程度不及同等級的火花隙特斯拉線圈。為此,有愛好者提出了雙諧振固態特斯拉線圈(DRSSTC)的模型,以彌補普通固態特斯拉線圈的不足。雙諧振固態特斯拉線圈是在普通特斯拉線圈的基礎上,在初級線圈上串入電容組,並讓驅動電路輸出頻率=初級LC固有頻率=次級LC固有頻率,這樣做的好處是:1.初級部分處於諧振狀態,其負載特性為純阻性,功率因數高,能量利用率也就提高了;2.由於初級部分是諧振的,導致初級電流上升較快,瞬間電流較大,從而使得產生的閃電比較壯觀。因此,雙諧振固態特斯拉線圈更受到廣大愛好者的歡迎!
總結:DRSSTC和SSTC差不多隻不過是多了諧振電容,SSTC的初級線圈只是起耦合的作用不會起產生震盪的作用,而SSTC的初級也是一個LC震盪迴路。因此DRSSTC我們可以看做是SGTC的一種升級,取消了變壓器和打火器。但是性能卻遠遠高於SGTC。
固態特斯拉線圈的結構
固態特斯拉線圈由三個部分組成:功率電路驅動電路滅弧電路
D3-6是瞬態二極體是用來防止突然來的高壓擊穿開關管。
C3是吸收電容,由於線路間是存在分布電感的,在高頻開關狀態下,容易產生寄生振盪和尖峰電壓,從而導致開關管損壞,這個電容是起到一個緩沖作用因此必須要加。
這個圖有一個問題就是需要在開關管的觸發極和低壓線上並聯30V左右的穩壓二極體,防止驅動信號電壓過高擊穿開關管。
以上的輸入電源必須是直流電也就是經過整流橋的市電!
為了產生振盪的電流我們必須要准確地控制開關,在幾百KHZ的頻率下人去控制肯定是不行的這時就要交給我們的大哥大,也就是「整個TC的心臟」驅動電路了(如果這一節沒有看懂也沒有關系,只要記住是發出信號控制開關管就行)壇子里很多人都很熱衷於STEVE的Dr驅動電路,但是仔細的想想,他這個電路的缺陷還真的是不老少。我們先對其進行分析,一遍指出其優略。
....
2. 十大自動門品牌有哪些
多瑪自動門怎麼樣
多瑪自動門怎麼樣?自動門中,多瑪自動門的各個方面也都在發生改變,但不變的是讓消費者信得過的質量,今天我們就來為大家解答多瑪自動門怎麼樣的問題。
多瑪自動門品牌介紹
多瑪集團總部位於德國北威州,是全世界門控系統最大的生產商之一,旗下65家全資子公司分布於世界各地44個國家。在閉門器和活動隔音隔斷領域里,多瑪是公認的世界第一位,現自動門系列產品也躍居世界第一位。多瑪集團在歐洲多個國家、新加坡、馬來西亞以及中國、美國、巴西都設有工廠。在2004年至2005年(6月30日)財政年度里,多瑪的營業額達7億歐元,雇員人數超過6100人。百年累積的玻璃系統及組件全球領導者,德國多瑪DORMA正在構建和完善全國范圍的玻璃系統及組件代理銷售網路,德國多瑪DORMA玻璃系統及組件致力於設計,生產和銷售高檔室內玻璃門系統和玻璃隔斷系統,玻璃門配件和玻璃淋浴房配件。憑著精湛的技術,成熟的產品和完善的服務,多瑪玻璃系統及組件可廣泛用於高檔的室內家居,寫字樓,酒店,商場和機場等大型公共建築。多瑪以它五大領域的經典系列產品聞名於世:液壓門控產品,自動化產品,玻璃系統組件和配件,安全/門禁系列產品,以及移動隔斷產品。在2003/04財政年度,多瑪集團在其5500名員工的共同努力下實現了6億4千9百萬歐圓的銷售業績。多瑪公司給予建築師,規劃設計和計劃工程師發揮創新的靈感提供了極大的支持。
多瑪自動門怎麼樣
多瑪的產品主要集中在門控技術系統,是當今世界門控產品市場領導者,多瑪有五大領域的經典系列產品聞名於世,其中就有自動門,多瑪的產品一直以最佳性價比著稱,以優惠的價格提供給消費者最好的質量。在我國,多瑪自動門的應用工程非常多,在北京銀谷大廈、洛陽市中亞大飯店、天津CBD中心標志性建築信達廣場、東方藝術中心、上海大劇院、及大上海時代廣場等多處城市地標建築。
多瑪自動門產品價格
1、多瑪新型ES 90Easy
開門寬度:800-3,3000mm 最大門重:2×160kg;1×200kg 機組承重達2*85kg
2、多瑪ES-90S自動感應門
電腦控制 可用於單扇平移門、雙扇式平移門
3、多瑪ES-200型
3. 特斯拉線圈的原理是什麼
特斯拉線圈的貌似就是兩個諧振線圈。
某網路中介紹特老剛開始做這個的時候是為了與愛迪生OOXX,愛迪生說交流電危險,然後特老就做了個特斯拉線圈,讓次級電流通過自己以反駁愛迪生的「謬論」。之後特老就開始向無線輸電的方向發展了(特老的無線輸電項目成功與否至今還是個迷),特老當年做的TC(特斯拉線圈縮寫)都是SGTC(火花間隙特斯拉)。特老之所以厲害是他能在當年就能把SGTC調諧振。
現在特斯拉線圈的分支有很多,最簡單的還是SGTC(不過效率低下,所以後來有了晶體管做開關元件的特斯拉線圈,效率大大提升)
OLTC(離線式特斯拉)
SSTC(固態特斯拉,這個的分支還有ISSTC,就是有滅弧的SSTC)
VTTC(電子管特斯拉)
DRSSTC(雙諧振固態特斯拉)
如果想做的話做個小的SGTC很簡單,成功率也很高(很容易出電弧,但是諧振很難調),如果你認識些賣原件的話,也花不了多少(100~300)不過這個只能拉電弧而且調諧振更會讓你糾結好久。
如果想放音樂的話 CLASS-E 的HIFI SSTC也不錯,不過需要電子基礎
提醒「這個實驗有一定的危險程度,請注意安全」
如果想做的話發郵件[email protected]細聊
4. LTC變壓器是載調壓變壓器么
是載調壓變壓器。
變壓器(Transformer)是利用電磁感應的原理來改變交流電壓的裝置,主要構件是初級線圈、次級線圈和鐵芯(磁芯)。主要功能有:電壓變換、電流變換、阻抗變換、隔離、穩壓(磁飽和變壓器)等。按用途可以分為:電力變壓器和特殊變壓器(電爐變、整流變、工頻試驗變壓器、調壓器、礦用變、音頻變壓器、中頻變壓器、高頻變壓器、沖擊變壓器、儀用變壓器、電子變壓器、電抗器、互感器等)。電路符號常用T當作編號的開頭.例: T01, T201等。
5. 小米充電寶按兩下什麼模式
小米無線充電寶外觀和參數
純白外殼加醒目的10000毫安支持無線充電字樣和橙色小米Logo,告訴大家米家商店的東西又多了一個。包裝背面有相關的產品信息,還多了一個防偽驗證條。什麼時候小米也需要防偽了,本來價格就不高,還要模仿小米的製造用料和外觀,仿冒者真的會有利潤么?
拿出本體,配件很簡單:說明書和一根短短的充電線就是他的全部了。
全新的充電器USB-A和type-c口這里有封條保護,防止灰塵進入。
無線充電面,有一個電力標記,代表了感應線圈的位置。這面貼心的使用了親膚塗層。不用擔心鋁合金的小米充電寶外殼刮傷手機,同時也增加了摩擦力,手機放在上面不容易滑掉。
充電寶的一側標明了其參數
輸入可以做到5V*3A/9V*2A/12V*1.5A,最高18W輸入。輸出功率是無線10W,有線A和C口都是最高18W,屬於快充級別了。支持蘋果的2.4A模式,也能用LTC的線進行18W快充。
撕掉黑色的遮羞布,露出來的是A+C兩個口和指示燈按鍵。
其中C口是雙向的,可以給充電寶充電,也能當有線充電口給其他設備充電。C口A口最高都是18W,兩個口都是插入自動識別開始充電,不需要按按鈕。
小米無線充電器充電
無線充電需要按鍵,單擊後會通過四個LED顯示目前剩餘電量,同時激活無線充電狀態。快速短按兩下就可以進入小電流充電給藍牙耳機充電更加安全。
小米充電寶的無線充電還是很給力的,按照有些媒體的說法,iphone xs max是可以達到10W的無線快充的,也有稱最高7.5W,但是無線快充的功率是玄學,真的有多少,我手頭沒有設備測試。3個小時左右就能從10%充滿我覺得這速度可以接受。
無線充電的有效距離很長,大約如下圖這么多,也就是隔開這點距離無線充電也不會停止。這就意味著即使拿著手機和充電寶無線充電的時候,也不會因為一點點細微的偏差讓無線充電停止。
無線充電足夠給力,有線充電也能快充,用普通的蘋果線在C口可以進行2.4A模式最高充電功率為12W,用LTC可以用C口充電,最高功率18W。當然兩者實際充滿時間差別不大,快速充電只作用於最初的20分鍾左右,個人覺得花一百多買授權的LTC意義不大。
充電寶自身充電也很快,在使用支持PD的快充頭給小米充電寶充電的時候,可以順利進入9w*2A的快充模式。沒有具體監控整個過程,但是充滿這個充電寶,大約需要6個小時左右的時間。
這次的小米充電寶除去自身不錯的素質之外,最有價值的的是,平時可以把它當成一個無線充電板來使用。晚上插上快充放在床頭櫃充電,同時把手機放上去充電,第二天就能獲得一個充滿電的手機和一個充滿電的充電寶
6. LTC8842運放延遲
你好,LTC8842運放延遲的原因是:用運放做放大電路輸出波形失真的原因主要有:各放大級間耦合時出現飽和失真和元器件不良造成的交聯失真、反饋深度不足或退耦不足造成、用變壓器耦合或倒相電路輸入時出現交越失真、電子元件由於平行感應和屏蔽不良、接地不良造成的信號串擾,工作電壓不正常造成的門檻電壓變化或電容的濾波不良造成的高頻干擾等。具體是什麼原因造成的,需要 專業人員去各個核實調查,才能快速地找到正確結果。
7. 交流220V電流檢測電路,電流只有十幾個毫安,怎麼搭建電路
10幾毫安已經很大了。這種情況用互感器,體積大、一致性差。建議你採用雙向的光耦來檢測。推薦TLP620。
8. Ltc台燈變成感應燈怎麼關掉
1、Ltc台燈變成感應燈的關閉方法將感應燈上的紅外感應區或著感應孔,用膠布堵上。
2、直接將Ltc台燈感應裝置拆下,更換為普通的控制開關。為了避免此種情況,最好在安裝感應燈時,在控制迴路中串聯接入一個開關或者時間繼電器。這樣感應燈用時可常開,不用時也可以輕松關閉。
9. 模擬式稱重感測器如何怎樣接入電腦
買個專用的模數轉換模塊,帶集成或分立232或485的模塊,還有要通訊協議。
10. 采樣電阻的應用場合有哪些該怎麼選型呢
采樣電阻基於磁場的檢測方法(以電流互感器和霍爾感測器為代表)采樣電阻具有良好的隔離和較低的功率損耗等優點,因此主要在驅動技術和大電流領域被電子工程師們選用,但它的缺點是體積較大,補償特性、線性以及溫度特性不理想。對於電流檢測的原理,目前主要有兩種的檢測:基於磁場的檢測方法和基於分流器的檢測方法。 由於小體積的高精度低阻值采樣電阻器的實用化,以及數據採集和處理器性能的大幅度提升,已經導致傳統的基於分流器的電流檢測方法的技術革新,並使新的應用成為可能。
然而,電路板上的取樣端子和采樣電阻組成了一個環狀結構,為了避免其間因電流產生的磁場和外圍磁場而形成的感應電壓,需要特別強調要使取樣的信號線形成的區域越小越好,最理想的是微帶線設計。采樣電阻又電流檢測電阻,也有人翻譯為電流感測電阻器,英語翻譯為current sensing resistor,采樣電阻阻值一般小於1歐姆,我見過的最小阻值是0.1毫歐,常用用的有0.025歐,0.028歐,0.05歐等。原理:將采樣電阻串入電路中,根據歐姆定律,當被測電流流過電阻時,電阻兩端的電壓與電流成正比,轉換為電壓型號進行測量。
低電感:在當今的很多應用中需要測量和控制高頻電流,分流器的寄生電感參數也得到了大幅改善。表面貼裝電阻器的特殊的低電感平面設計和合金材料的抗磁特性,金屬底板,以及四引線連接都有效降低了電阻器的寄生電感。
采樣電阻
采樣電阻熱電動勢,當溫度輕微升高或者降低時,在不同材料的接觸面上會產生熱電勢,這種效應對低阻值電阻的影響非常重要,盡管通常情況下熱電勢數值非常小,但微伏級的熱電勢能夠嚴重地影響測量結果。長期穩定性:對於任何感測器來說,長期穩定性都非常重要。甚至在使用了一些年後,人們都希望還能維持早期的精度。這就意味著電阻材料在壽命周期內一定要抗腐蝕,並且合金成分不能改變。端子連接:在低阻值電阻中,端子的阻值和溫度系數的影響往往是不能忽略的。在PCB layout也要注意采樣電阻的走線不能太長,太細。我在使用linear LTC4100做充電管理時,版PCB由於忽略了這一點,走線有點長,導致充電電流無法達到我的設定值,後來查了很久才發現是這個問題。
采樣電阻應用場合:電源管理(如電源監控)。開關電源SMPS(DC-DC, 充電管理,電源適配器)。如Linear的4100系列鋰電池充電電路,採用采樣電阻控制充電電流。
選型:常見生產廠家:Vishay, IRC,Ohmite, Bourns, 國產的主要有國巨等。PS:電子元件技術網的選型工具也比較好用。采樣電阻都是精密電阻,精度都在1%以內,更好要求時採用0.05%,甚至0.01%,功率有0.25W,0.5W,1W等。 阻值:和普通電阻一樣,標准阻值為非連續。表示方法:毫歐電阻可表示為: R001 = 0.001R。25毫歐電阻可表示為: R025 = 0.025R。100毫歐電阻可表示為: R100 = 0.1R。封裝:常見的封裝有1206/2010/2512。 溫度系數:是錳鎳銅合金電阻的典型溫度特性曲線,溫度系數TCR單位為ppm/K,在20或25℃ 時,TCR=[R(T)-R(T0)]/R(T0) ×(T-T0),對於溫度系數的定義,製造商標明溫度的上限是必要的,舉例說明在+20 -+60℃的溫度范圍內,測量系統經常選用TCR為幾百個ppm/K 的低阻值的厚膜電阻器,比如TCR 為200 ppm/K的電阻器的溫度特性,即使在如此小的范圍內,+50℃的溫度變化就足以導致阻值變化超過1%。