ltc同步
『壹』 MP3怎麼下歌詞啊能讓歌詞同步
這很簡單:
先下載歌曲到電腦里
用千千靜聽打開歌曲
先左擊那首歌,然後右擊那首歌
點擊
發送到
再點就要保存的磁碟,如:移動磁碟(H)/?
馬上就出現一個對話框:是否同時發送相應的歌詞文件到H:/
點擊
是
一切就ok了
注意
一:歌曲和歌詞名要相同
如奧運主題歌我和你
歌曲名
我和你
歌詞名
我和你.lrc
.lrc為歌詞文件的後綴
二:歌曲和歌詞文件要放在同一個文件夾,否則無法顯示歌詞
『貳』 LTC探索之路-回款
回款是LTC最後一個關鍵活動,是價值創造的地方。通過產品的交付,從客戶手上回收貨款,關閉交易。
單就回款這個節點,無外乎是與客戶對賬,收取貨款。但要做好這個節點的卡控,需著眼於整個交付流程。
一是要從源頭管起,做好客戶准入,資信點檢。二是過程做好合同的管理,包括關鍵條款的解讀和點檢,防範風險;
三是結合財務預算規劃,做好授信管理與交付監控。最後是對應收進行管理,包括對賬,預測,催收,以及逾期後的函證、訴訟管理。
基於以上3大管控點,下面逐步展開:
1、源頭管理:核心是做好潛質客戶的模擬,客戶資質的點檢和系統客戶創建。基於客戶資信、風險調查(通過天眼查查詢客戶失信情況、債務情況,買賣合同執行情況等),從源頭做好風險的管控。
除去聚焦客戶失信外,也要從資金流動性上予以考慮,比如先款後貨的客戶,哪怕有失信記錄,也可以一票准入。
慎重評估訂單的毛利與管理成本,如果是負毛利,或者單客戶規模小於某個值(例如100萬),或者股票質押率>80%,可一票否決。前者是小單增加管理復雜度和管理成本(除非後端很靈活,可以極大降低這種成本),後者是降低現金流。
另一方面,這也是基於LTC流程前端防雜的一個著手點,通過客戶資信的點檢,拒棄客戶訂單,降低企業經營風險。
2、過程管理-合同:與合同流程拉通,對客戶簽約合同從履約、法務等維度進行點檢,防範風險。特別是裡面的付款方式、付款節奏,違約索賠等條款;
3、過程管理-授信:因為資金是流動的,很多客戶資金並不充裕,可能需項目結束甚至產生效益後才能回款。為了確保業務的開展,需要結合客戶信用情況,前期墊付部分資金用於訂單的交付(主要表現為原材料的采購及生產費用等)。
所以,既要基於客戶信用情況和自身現金流做好授信規劃,比如我規模預算1個億,我客戶授信最多不超過0.3億,這0.3億怎麼合理分配給對應的客戶,這都是要企業財務進行考量的。
在這里不僅要建立授信標准,也要有管控要求,授信標准核心是授信准入,比如是客戶是國家局的,是現款現貨,或者是銀行信用等級高或者是中信保清單的客戶。而管控動作可以是在合同簽訂前推特險(基於交易購買交易險等),將風險轉嫁到第三方;也可以是合同閉口(較被動)。
4、應收管理:結合上文客戶的收貨回執,按合約線上發起對賬通知(付款到期前30天或者前15天),通知業務人員與客戶對賬,催促客戶付款。
對內而言,要建立應收台賬。按區間對應收進行預測與預警。如果客戶到期未付款,要進行逾期分析,是交付不滿意,存質量問題還是客戶自身問題。如果是我方問題,要倒逼內部責任部門進行閉環。如果是外部問題,按合約發起法律訴訟(於合同流程打通)。
如果前面有買過保險的,要及時申報,降低企業損失。同步做好壞賬登記並按會計相關制度進行計提。同時,對該客戶進行系統凍結,納入黑名單,上報對應部門。
『叄』 脈沖頻率調制開關穩壓器電路分析
V4V5組成無穩態多諧振盪器。
無穩態即指它不能穩定在某種狀態,會不斷的發生改變。兩個管輪流導通截止。
多諧指輸出的波形不是正弦波,有很多諧波成分。
比多諧振盪器並不完全對稱,所以輸出的波形是不對稱的。V4的導通時間由R8、R5和V3的集電極電壓決定。
V2是一個射極跟隨器(跟隨輸出電壓),把輸出的電源電壓反饋到V3的發射級,由V3放大後控制V4的導通時間。
V4導通V5截止,V4截止V5導通。
V5截止時,V1導通,通過V5的截止時間控制V1的導通時間。V1導通時間越長,輸出電壓越高。
V1輸出的電壓經L1和C1濾波變成穩定的直流電源輸出。
VD4是增強二極體,防止L1在V1截止時產生的高反壓擊穿V1發射極基極。
VD1是泄流二極體,防止L1產生的感應電流損壞V1。
此電路主要工作在開關狀態,所以比較容易分析。
V2V3是射極偶合放大電路,VD2為V3基極提供更穩定一點的電位,增強R4的偶合效率。
VD3為振盪器和放大取樣電路提供相對穩定一點的工作電壓。
R1R2是V2的基極偏置電路,同時也是輸出電源的取樣電路。
『肆』 脈沖頻率調制開關穩壓器電路分析
隨著人們對能量效率要求的提高,越來越多產品在設計時開始採用開關穩壓器以取代線性穩壓器。使用多個開關穩壓器的電源系統日漸普及,而伴隨著穩壓器數目的增加,電磁干擾(EMI)的影響也在加劇。為降低EMI,最簡單、最具成本效益的方法之一就是採用多相、擴頻時鍾。
多相同步
大多數開關穩壓器的工作頻率都可利用一個外部時鍾來控制,而這個外部時鍾又決定了所產生EMI的基本頻率。利用這個特點可以將EMI設定在一個敏感頻段之外,而且,當同時運作多個開關穩壓器時,這是一個極為有用的特點。當時鍾頻率彼此靠近並引起拍頻情況時,多個獨立運行的開關穩壓器有可能產生很大的峰值EMI。同樣,如果多個穩壓器依靠單個時鍾來運作,則EMI將被同步,並因此而變得非常集中。一種解決方案是以相同的時鍾頻率、不同的相位來驅動每個穩壓器。
多相同步指的是以單一時鍾頻率對多個開關電源進行外部驅動的方法,該方法在每個穩壓器之間設置了一個時移。通過使每個開關電源錯開接通(這樣一來,目前吸收輸入電流的工作相位先前則是一個死區),峰值開關電流得以減小。因此,使多個開關穩壓器「異相」(而不是「同相」)同步可以減小峰值電流,從而降低EMI。
此外,相位同步將導致產生的EMI頻率提高。這簡化了降低EMI的任務,因為濾波處理方式在較高的頻率條件下更加有效。
圖1:採用擴頻調制,可提供1至8個輸出的多相硅振盪器LTC6909。
擴頻調頻(SSFM)及接收器
除了多相同步之外,還可以通過連續改變開關穩壓器時鍾的頻率來改善EMI。這種被稱為SSFM的技術不允許發射能量在任何接收器的頻段中停留過長的時間,從而改善了EMI。為了最大限度地發揮SSFM的效用,主要有4個必需考慮的因素:受影響接收器的帶寬、頻率調制的方法、頻率擴展量和調制速率。
在考慮EMI時,設計師應對受EMI影響的接收器帶寬有所了解。這些接收器可能是實際的系統設備,也有可能是用於實現與CISPR 16-1監管標准之相符性的接收器。接收器的帶寬決定了兩個重要的特性:接收器將會做出響應的頻率范圍以及在遭受EMI時接收器的響應時間。
調制方法
大多數開關穩壓器都會呈現隨頻率而變化的紋波;在較低的開關頻率下紋波較多,而在較高的開關頻率下則紋波較少。因此,如果對開關時鍾進行頻率調制,則開關電源的紋波將呈現幅度調制。如果時鍾的調制信號是周期性的(例如:正弦波或三角波),則將進行周期性的紋波調制,而且在調制頻率上存在一個明顯的頻譜分量。由於調制頻率遠遠低於開關電源的時鍾頻率,因此可能難以濾除。因為下游電路中的電源雜訊耦合或有限的電源抑制,這有可能引發問題,例如:可聽音或明顯的偽像。偽隨機頻率調制能夠消除這種周期性紋波。當採用偽隨機頻率調制時,時鍾將以一種偽隨機的方式從一個頻率轉移至另一個頻率。由於開關電源的輸出紋波由一個類雜訊信號施以幅度調制,因此輸出看似沒有進行調制,而且下游系統的影響可忽略不計。
圖2:LTC6909的偽隨機調制和內部跟蹤。
調制量和調制速率
當SSFM頻率的范圍增加時,帶內時間的百分比減少。如果發射信號偶爾進入接收器的頻段而且停留的時間很短(相對於其響應時間),則可以顯著地降低EMI。例如:在降低EMI方面,±10[%]的頻率調制將比±2[%]的頻率調制有效得多。然而,開關穩壓器所能容許的頻率范圍是有限的。一般來說,大多數開關穩壓器都能很容易地承受±10[%]的頻率變化。
對於某個給定的接收器,當頻率調制的速率增加時,EMI處於「帶內」的時間將減少,EMI將降低,這一點與調制量很相似。不過,對開關電源所能跟蹤的頻率變化速率(dF/dt)有一個限值。相應的解決方案是找出那個不會影響開關電源輸出調節性能的最高調制速率。
理想的解決方案
硅振盪器為多相、擴頻開關穩壓器時鍾提供了一個理想的平台。除了具有一個板上時鍾發生器之外,這些固態器件還能將擴頻調制與多相輸出組合起來。考慮到這一點,凌力爾特公司開發出了LTC6909(圖1),這是一款具有8個單獨多相輸出的精準擴頻硅振盪器。單個電阻器負責在12.5kHz至6.67MHz的范圍內選擇輸出頻率。三個邏輯輸入用於設定輸出相位關系(范圍從45°至120°),從而允許LTC6909為多達8個相位提供同步。可以啟用一種偽隨機擴頻調頻,頻率擴展量在中心頻率的±10[%]。用戶可選擇3種調制速率之一,以確保調制速率不超過穩壓器的帶寬。此外,LTC6909還具有一個創新的濾波器,該濾波器負責跟蹤SSFM調制速率並在頻率轉換之間提供平滑處理。
圖3:LTC6909啟用SSFM以改善EMI。
本文小結
在單個系統中使用多個開關穩壓器會產生重大的EMI問題。除了標準的布局、濾波和屏蔽等習慣做法之外,運用多相同步和擴頻調頻也能夠大幅地改善EMI性能。凌力爾特的LTC6909提供了一種簡單明了的解決方案。幾乎不費吹灰之力,這款小巧、低功率和堅固的硅振盪器就能夠輕而易舉地證明其價值。>WK2060-3.3M 開關穩壓器特點高達95[%]的效率(5V輸出)
輸出電流6A
輸入范圍4.5V∽32V
3.3V固定電壓輸出
開關頻率 300KHz@3A
用戶可編程軟啟動時間
靜態電流小於1mA
用戶可自設定過流保護點>開關穩壓器的電路結構及基本工作原理開關式穩壓電路的顯著特點是功率器件工作在開關狀態,因而效率可大大提高,一般可達80[%]。另外,還具有穩壓范圍寬、穩壓精度高、可省去電源變壓器等優點,是一種理想的穩壓電源,因而廣泛應用於彩色電視機、錄像機以及計算機等各種電子設備中。
開關式穩壓電路分調寬式和調頻式兩種,在實際應用中調寬式使用得較多。開關集成穩壓器一般都採用脈寬調制式工作方式,從控制上分有電流型和電壓型兩大類;從輸入輸出關繫上分有降壓型、升壓型和極性反轉型-大類;從電路結構 上分有開關集成穩壓器和開關電源脈寬調制器之分,開關集成穩壓器只限於低電壓穩壓電源。為了避免大功率集成電路的一些困難,往往將開關式穩壓電外圍元件,即可構成一個開關式穩壓電源。
現將調寬式開關電源的基本工作原理作一介紹。
調寬式開關電源基本工作原理圖
圖為凋寬式開關電源的基本工作原理圖。對於單極性矩形脈沖來說,其直流平均電壓Vo取決於矩形脈沖的寬度,脈沖越寬,直流平均電壓值就越大。直流平均電壓Vo可由下式計算:
式中:Vm ——矩形脈沖最大電壓;
T1——矩形脈沖寬度;
T——矩形脈沖周期。
調寬式開關穩壓電源方框圖
從上式可以看出,當Vm和T一定時,直流平均電壓Vo將與脈沖寬度成正比。因此,只要改為T1的大小便可改變直流平電壓Vo的大小。
圖為調寬式開關穩壓電源的方框圖。從圖中可以看出,交流220V市電經直接整流和初步濾波後成為末穩直流電壓。該電壓經T2初級和開關調整管VT形成迴路。由於開關調制而工作於開關狀態,所以通過T2初級線圈的電流為脈沖電流,此電流經T2變換成為所需的電壓,經整流濾波而成為輸出電壓Vo。
輸出電壓Vo經取樣電路取出,經比較放大電路與基準電壓對比,得出誤差電壓。該誤差電壓用來控制脈沖寬度調制器,改變由脈沖振盪器送來的脈沖寬度,從而控制開關調整管導通時間,達到調壓的目的。
『伍』 充電電路原理圖解釋
上圖為充電器原理圖,下面介紹工作原理。
1.恆流、限壓、充電電路。該部分由02、R6、R8、ZD2、R9、R10和R13等元件組成。當接通市電叫,開關變壓器T1次級感應出交流電壓。經D4、C4整流濾波後提供約12.5V直流電壓。一路通過R6、R1l、R14、LED3(FuL飽和指示燈)和R15形成迴路,LED3點亮,表示待充狀態:另一路電壓通過R8限流,ZD2(5V1)穩壓,再由並聯的R9、R10和R13分壓為Q2b極提供偏置,使Q2處於導通預充狀態。恆流源機構由Q2與其基極分壓電阻和ZD2等元件組成。當裝入被充電池時12.5V電壓即通過R6限流,經Q2的c—e極對電池恆流充電。這時由於Ul(Ul為軟封裝IC型號不詳)與R6並聯。R6兩端的電壓降使其①腳電位高於③腳,②腳就輸出每秒約兩個負脈沖。
使LED2(CH充電指示燈)頻頻閃爍點亮,表示正在正常充電。隨著被充電池端電壓的逐漸升高,即Q2 e極電位升高,升至設定的限壓值(4.25V)時,由於Q2的b極電位不變,使Q2轉入截止,充電結束。這時Q2c極懸空,Ul的③腳呈高電位,U1的②腳輸出高電平,LED2熄滅。這時電流就通過R6、R11、R14限流對電池涓流充電,並點亮LED3。LED3作待充、飽和、涓流充電三重指示。
2.極性識別電路。此部分由R12和LEDl(TEST紅色極性指示燈)構成。保護電路由Q3和R7等元件構成。假設被充電池極性接反了。
LED1就正偏點亮,警告應切換開關K,才能正常充電。如果電池一旦接反,Q3的I)極經R7獲得正偏置,Q3導通,Q2的b極電位被下拉短路而截止,阻斷了電流輸出(否則電池就會被反充而報廢),從而保護了電池和充電器兩者的安全。
『陸』 急急急!有誰知到 LTC時間碼 的編碼方式和的解碼方法嗎
時間編碼
一、概念
這里我們要說明一下媒體流處理中的一個重要概念-時間編碼。
時間編碼是一個為了視頻和音頻流的一種輔助的數據。它包含在視頻和音頻文件中,我們可以理解為時間戳。
SMPTE timecode 是一個SMPTE 時間和控制碼的總和,它是一視頻和音頻流中的連續數字地址楨,標志和附加數據。它被定義在ANSI/SMPTE12-1986。它的目的就是提供一個可用計算機處理的視頻和音頻地址。
最多SMPTE時間碼的數據結構是一個80bit的一楨,它包含下面的內容:
a、 一個hh::mm::ss::ff(小時::分鍾::秒::楨)格式的時間戳。
b、 8個4位的二進制數據通常叫做「用戶位」。
c、 不同的標志位
d、 同步序列
e、 效驗和
這個格式在DirectShow中被定義為TIMECODE_SAMPLE。
時間碼分為兩種形式,一種是線性的時間格式LTC(縱向編碼),在連續時間中每一個時間碼就代表一楨。另外一種時間碼是VITC(橫向編碼),它在垂直消隱間隔中儲存視頻信號的兩條線,有些地方在10到20之間。
LTC時間碼要加到比如錄像帶中會非常容易,因為它是分離的音頻信號編碼。但它不能在磁帶機暫停、慢進、快進的時候被讀取。另外在非專業的錄像機中它有可能會丟失一路音頻信號。
VITC時間碼和LTC不同,它可以在0-15倍速度的時候讀取。它還可以從視頻捕獲卡中讀取。但是它要是想被錄制到磁帶上可能就需要一些別的設備了,通常那些設備比較昂貴。
SMPTE時間碼同時支持有兩種模式,一種是非丟楨模式,一種是丟楨模式。在非丟楨模式中,時間碼是被連續增長的記錄下來。它可以完成時實的播放工作達到30楨,或更高。
NTSC制式的視頻播放標准為29.97楨/ 每秒,這是考慮到單色電視系統的兼容性所致。這就導致一個問提,在非掉楨模式下會導致一個小時會有108楨的不同步,就是真實時間中一個小時的時候,時間碼只讀了00:59:56:12,當你計算流媒體的播放時間的時候會有一些問題。為了解決這種問題,我們可以在可以容忍的情況下跳楨實現。這種方式的實現是通過在每分鍾開始計數的時候跳過兩楨但00,20,30,40,50分鍾時不跳楨。採用這樣的方案我們的網路測試結果每小時誤差少於一楨,每24小時誤差大概在3楨左右。
在現在的實際工作中,雖然兩種模式都被同時提供,但丟楨模式通常被我們採納。
二、 時間碼的典型應用
控制外圍設備來進行視頻捕獲和編輯是一種典型的應用程序。這種應用程序就需要標識視頻和音頻楨的每一楨,它們使用的方法就是使用SMPTE時間碼。線性編輯系統通常會控制三個或者更多的磁帶機器,而且還要盡可能的切換視頻於光碟刻錄機之間。計算機必須精確的執行命令,因此必須要在特定的時間得到錄像帶指定位置的地址。應用程序使用時間碼的方法有很多中,主要有下面這些種:
a、 在整個編輯處理過程中跟蹤視頻和音頻源
b、 同步視頻和音頻。
c、 同步多個設備
d、 在時間碼中使用未定義的位元組,叫做:userbits。這裡面通常包含日期,ascii碼或者電影的工業信息等待。
三、 捕獲時間碼
通常,時間碼是通過一些有產生時間碼能力的捕獲卡設備來產生的。比如一個rs-422就需要時間碼來控制外圍設備和主機通信。
在時間嗎產生以後,我們需要從流格式的視頻和音頻中獲得時間碼,這是可以在以後進行訪問的。然後我們處理時間碼通過下面兩步:
a、 建立一個每一楨位置的非連續的索引,將時間碼和每一楨一一對應。這個列表是在捕獲完成後的文件末尾被寫入的。列表可以是一個象下面的這個結構的矩陣數組,為了簡明起見,這里提供的只是DirectShowTIMECODE_SAMPLE結構的一個簡化。
struct {
DWORD dwOffset; // 在楨中的偏移位
char[11] szTC; // 在偏移值中的時間碼的值
// hh:mm:ss:ff是非掉楨的格式 hh:mm:ss;ff 是掉楨的格式
} TIMECODE;
例如,這里可以給出一個視頻捕獲流中的時間碼:
{0, 02:00:00:02},
{16305, 15:21:13:29} // 位於16305楨的時間格式
使用了這張表,任何楨的時間碼都會很好計算。
B、還有一種做法就是將時間碼作為視頻和音頻數據寫入。這種我們不推薦使用因此不作介紹了。
被寫入時間碼的文件就可以編輯,復合,同步等操作了。這里就寫到這里,對於我們理解時間碼已經足夠了。其它的很多是關於標準的介紹,大家感興趣可以參閱一下。
『柒』 為什麼「ESLTC」機構得到了家長和社會越來越多的認可
ESLTC以《歐洲語言共同參考框架:學習、教學、評估》(CEFR)為標准,運用突破+創新的模式,符合新時代對應試能力型和語言能力型的雙重要求,為歐洲和其他國家的學生創造國際教育機會,同時享受CEFR標准體系下同質同步的國際課程。所以,它得到了家長和社會越來越多的認可!
『捌』 手機的MP3支持歌詞同步,應該把歌詞下再到哪個文件夾里歌詞的格式是LRC么
看看是什麼手機 有的是下到Lyrics或者是ltc開頭的文件夾里,還有的是下到和歌曲同一個文件夾里 但是歌詞的名字要和歌曲的名字完全一樣否責就不能識別,都是lrc格式的
『玖』 LTC如何快速同步數據
如何同步數據?因為實名制手機重新下載之後就可以如同快速同步數據就可以了
『拾』 LTC3307AHV 降壓轉換器頻率值
你好,LTC3307AHV 頻率值為1MHz - 3MHz。該晶元是一款3A 降壓型DC/DC轉換器,單片同步。