當前位置:首頁 » 幣種行情 » eth存儲結構

eth存儲結構

發布時間: 2023-02-28 07:13:42

以太坊之賬戶

外部賬戶創建流程:

當使用 geth account new 命令新建賬戶,最終調用 accountCreate(accountcmd.go)=>keystore.StoreKey=>storeNewKey(key.go)

storeNewKey完成私鑰、公鑰、地址的生產,最後保存成keystore文件到指定路徑。

最後保存的keystore文件為json格式,如下:

以下為用密碼可以推出私鑰的流程

對交易發起人的地址和nonce進行RLP編碼,再算出Keccak哈希值,取後20個位元組作為該合約的地址,即: Keccak-256(RLP(sender, nonce))[12:]
函數位於: crypto/crypto.go

賬戶在區塊鏈上的存儲結構,內外賬戶的結構都是一樣

文章github地址

⑵ 以太坊技術系列-以太坊數據結構

本篇文章和大家介紹一下以太坊的數據結構,上篇文章我們提到,以太坊為了實現智能合約這一功能,使用了基於賬戶的模型。我們來看看以太坊中數據結構。

既然是基於賬戶的模型,我們需要通過賬戶地址找到賬戶的狀態。就像通過銀行卡號可以找到你在銀行中的各種信息一樣。最簡單的想法當然是一個簡單的哈希表 key是賬戶地址 value是賬戶狀態。但這里有個問題解決不了。

輕節點如何校驗賬戶合法性?

上篇我們說過,區塊鏈中有2類節點,全節點和輕節點,輕節點只會存儲block header,所以輕節點如何才能校驗賬號是否合法呢?

這個思路和我們平時用的md5校驗一致,我們會對區塊內的信息進行hash運算從而得出區塊內信息唯一確定的值,區塊鏈所有節點中這個值都是相同的。

在這個過程中我們用到了一種數據結構Merkle Tree(哈希樹),我們先看下Merkle Tree(哈希樹)的示意圖。

上篇文章說到區塊鏈中的鏈表(哈希鏈)和我們平時常見鏈表不同的是將指針從地址改為了hash指,這里也一樣,哈希樹和二叉樹的區別有2個

1.將地址改為了哈希值

2.只有葉子節點存儲數據

回到之前的問題輕節點是如何校驗1個賬戶或交易是否是在鏈上的呢?

整個流程如上圖所示

1.輕節點需要判斷1個賬號是否合法

2.輕節點由於只存儲block header,所以拿到1個賬號的時候會向全節點發出請求

3.全節點存儲了所有賬戶狀態,將賬戶路徑中的需要計算用到的hash值返回給輕節點

4.輕節點本地進行計算根hash值,如果計算結果和自己存儲一致則賬戶合法,不一致則不合法。

那以太坊中的賬戶信息的數據結構就是這樣嗎?

直接用這樣的數據結構來存儲賬戶信息會有2個問題

查找困難

生成hash值不確定

第1個問題應該比較容易發現,在這個樹中尋找1個賬號需要的復雜度是O(n),因為沒有任何順序。

第2個問題其實也是因為無序導致的,無序的組合每個節點針對同一批賬戶生成的hash值不一致,這就導致無法達成共識。

既然2個問題都和順序有關,那我們類似二叉排序樹一樣,使用哈希排序樹是不是就可以解決問題了呢?

使用排序樹後會帶來另外1個問題

插入困難

因為要維持樹是有序的,很可能帶來樹結構的很大變動。

以太坊中使用了另外一種數據結構字典樹。和哈希樹不同,字典樹應該是很多地方都有使用。我們簡單來看下字典樹的結構。

字典樹能夠較好地解決哈希樹的2個缺點1.查找困難 2.生成的hash值不確定以及排序二叉樹的1個缺點 插入困難。

但字典樹我們可以看到可能樹的深度可能由於部分元素導致整棵樹深度非常深。

這時我們可以進一步優化,將相同路徑進行壓縮。這就是壓縮字典樹。

將哈希樹和壓縮字典樹結合,就可以得到以太坊存儲賬戶的最終數據結構-MPT。

將壓縮字典樹裡面的指針從地址改為指針,並且將數據存儲在葉子節點中即可。

介紹完狀態樹的數據結構,我們接下來討論1個問題,區塊中存儲的賬戶狀態是什麼樣的范圍。有2種選擇。

只保存當時區塊中產生交易的賬戶狀態。

保存全局所有的賬戶。

我們可以看下這2種方式,無非就是空間和時間的平衡,只保存當前區塊產生的交易意味著是做懶載入(需要的時候才去尋找賬戶),在區塊鏈中這個代價是非常大的,因為尋找的賬戶之前從未交易過,這樣會遍歷整個區塊鏈。另外一種保存全局的賬戶方式雖然看起來空間消耗較大,但查找快捷,而且空間的問題我們可以通過其他方式優化。所以最終以太坊選擇了第2種每個區塊都報錯全局所有賬戶的方式。

我們來看下以太坊中是如何保存狀態樹的。

可以看到以太坊中雖然每個區塊都保存了全部賬戶,但是會將未發生變化的賬戶狀態指向前1個節點,本身只存儲發生變化的狀態,這樣可以較大程度優化空間佔用。

介紹完以太坊中比較復雜的狀態樹後,我們繼續來看看以太坊中的另外兩棵樹,交易樹和收據樹。

首先介紹一下,為什麼需要交易樹&收據樹。

1.交易樹

雖然以太坊是基於賬戶的模型,但是就像銀行不僅會存儲銀行卡的余額,還會存儲卡中的每筆錢怎麼來的以及怎麼花的。交易樹中就存儲著當前區塊中的包含的所有交易。

2.收據樹

由於智能合約的引入增加了不少復雜性,所以以太坊用收據樹存儲著一些交易操作的額外信息。比如交易過程中執行日誌就包含在收據樹中方便查詢。收據樹和交易樹是一一對應的。每發生一次交易就會有一次收據。

和狀態樹不同交易樹和收據樹只維護當前區塊內發生的交易,因為當時區塊發生交易時不需要再去查找另外1個交易,也就之前需要可能遍歷整個區塊鏈的查找操作了。

由於以太坊中的出塊速度較快,我們進行一些查詢一些符合條件交易的時候會面臨大量數據遍歷困難的問題。收據樹中引入了布隆過濾器可以幫助我們有效緩解這一困難。

布隆過濾器將大集合中每個元素進行hash運算映射到1個較小的集合,這時再來1個元素要判斷是否在大集合的時候,不需要遍歷整個大集合,而是去進行hash運算去小集合中尋找是否存在,如果不存在,肯定不在大集合中,如果存在則不能說明任何問題。

如上圖所示,布隆過濾器只能證明某1個元素不在集合中,不能證明1個元素在結合中。

以太坊中如果我們要在較多區塊中尋找某1個交易,則可以利用布隆過濾器,過濾掉肯定不存在目標交易的區塊,然後進入收據樹內繼續利用布隆過濾器篩選,剩下的才是可能的目標交易的交易,進行一一比對即可。

我們介紹了以太坊的核心數據結構,狀態樹&交易樹&收據樹,他們都是使用相同的數據結構-哈希壓縮字典樹。但狀態樹是維護1顆全局賬戶樹,交易樹和收據樹則是維護本區塊內的交易或收據。

介紹完數據結構後,後面我們會用幾篇文章來介紹以太坊中的一些核心演算法,比如共識機制,挖礦演算法等。

⑶ Ziwa新一代分布式存儲通信協議

ZiwaNetwork是由ziwa實驗室開發的新一代分布式存儲和通信協議,Ziwa主要基於以太坊的DApp代碼、用戶基礎數據、區塊鏈和狀態數據,以及無法追蹤的分散和冗餘存儲等問題提供解決方案,以太坊開發者可以直接通過ziwa完成數據去中心化存儲的任務,而不是直接依賴IPFS、AR,BitTorrent等外部生態系統,構建自己的去中心化應用程序。

Ziwa的發展來源於以太坊需求的引導和啟發。

Ziwa團隊正在努力打造無停機、零故障、反審計的點對點存儲和服務解決方案。在紫窪內部建立經濟激勵體系,將促進資源交換價值的支付和轉移。該項目在以太坊區塊鏈中使用了不同的協議和技術。 Ziwa 的存在使互聯網再次去中心化。 Ziwa 的長期願景是成為一個重新分布的互聯網操作系統。它將為數據的供應鏈經濟提供可擴展和自我維持的基礎設施。

Ziwa實現了哪些功能

隨著Web 2.0的席捲全球,P2P(P2P)的革命正在加速並同步悄然發展。事實上,P2P已經接管了大量的數據包。毫無疑問,所有用戶最終都可以使用到目前為止尚未充分利用的上行帶寬,這可以提供具有相同可用性和吞吐量的內容,而這只能在大公司及其數據中心的幫助下才能實現。依靠互聯網骨幹網最寬的帶寬,可以以很小的成本實現。更重要的是,用戶對其數據保留了更多的控制權和自由度。最後,即使面對關閉強大且資金充足的實體的暴力手段,這種數據分配方法也被證明具有顯著的靈活性。然而,即使是最先進的 P2P 文件共享模式,沒有跟蹤器的 BitTorrent 也只是文件級別的共享。這根本不是 Web 2.0 上的 Web 應用程序所期望提供的那種互動式、響應式體驗。此外,雖然BitTorrent已經變得非常流行,但它並沒有考慮到經濟學或博弈論的概念。

BitTorrent 的天才在於其巧妙的資源優化,它解決了舊的和中心化的超文本傳輸協議 (HTTP),這是主從設計中最困難和根深蒂固的問題。該協議是萬維網的基礎。它通過使用分層分段散列來防止作弊,但這種精緻而簡單的方法有五個相應的缺點,

例如:

*缺乏經濟激勵——沒有內在的激勵來傳播下載的內容

*初始延遲 - 通常,下載開始緩慢且有一些延遲

*特殊性嚴重限制了BitTorrent在需要快速響應和高帶寬的互動式應用程序中的使用。

*缺乏細粒度的內容定址 - 小數據塊只能作為它們包含的較大文件的一部分共享。

*沒有隱私或歧義——攻擊者可以輕松地發現託管他們想要刪除的內容的對等點的 IP 地址,然後作為攻擊者使用 DDoS 攻擊。

*沒有繼續共享的動力——一旦節點達到其目標(即從對等方檢索所有必需的文件),它將不會因其共享的工作(存儲和帶寬)而獲得獎勵。

然而,隨著區塊鏈技術的加入,我們最終將迎來真正的 Web 3.0:一個去中心化和反審查的設備,用於共享和集體創建內容,同時保持對其的完全控制。而且,利用和共享利用率低的計算機的強大功能,完全可以解決上述問題。 Ziwa 項目的目的是為未來的自主主權數字 社會 構建一個未經許可的存儲和通信基礎設施。

Ziwa 的主要目標是為以太坊公共記錄提供完全去中心化和冗餘的存儲,特別是存儲和分發 DAPP 代碼和數據以及區塊鏈數據。從經濟的角度來看,它允許參與者有效地池化他們的存儲容量和帶寬資源,為網路中的所有參與者提供這些服務,並接受以太坊的激勵。 Ziwa 更廣泛的目標是為去中心化 Web 應用程序 (DAPP) 開發人員提供基礎設施服務,尤其是:消息傳遞、數據流、點對點會計、可變資源更新、存儲保險、監管掃描和修復、支付渠道和資料庫服務。

以太坊對世界計算機的願景構成了即將到來的數據場景的免信任(即完全信任)結構:支持數據存儲、傳輸和處理的全球基礎設施。

如果說以太坊區塊鏈是世界計算機的 CPU,那麼 Ziwa 最好被視為它的「硬碟」。當然,這個模型掩蓋了Ziwa的復雜特性,其功能遠不止簡單的存儲。Ziwa的范圍和數據完整性在三個維度從開發人員的角度來看,Ziwa 最好被視為一種公共基礎設施,它為 Web 2.0 時代熟悉的實時互動式 Web 應用程序提供動力。它為作為復雜應用程序構建塊的原語提供低級 API,並為基於 Ziwa 的 Web 3.0 開發堆棧的工具和庫提供基礎。 API 和工具旨在允許從任何傳統 Web 瀏覽器訪問 Ziwa 網路。

⑷ 一文讀懂以太坊—ETH2.0,是否值得長期持有

這幾天一直在看關於ETH倫敦升級方面的資料,簡單的聊一下,在加密貨幣的世界裡,無論是投資機構、區塊鏈應用開發者、礦機商,還是個人投資者、硬體供應商、 游戲 行業從業者等等,提起以太坊,或多或少都會有一些了解。

一方面取決於以太坊代幣 ETH 本身的造富效應。從 2014 年首次發行以來,投資回報率已經超過 7400 倍。


另一方面,以太坊作為應用最廣泛的去中心應用編程平台,引來無數開發者在其之上開發應用。這些應用不僅產生了巨大的商業價值,伴隨 DEFI 生態、NFT 生態、DAO 生態蓬勃發展,也給 ETH 帶來了更多使用者。


隨著「倫敦升級計劃」臨近,ETH 再次聚集所有人的關注目光。


以太坊 2.0 到底是什麼?包含哪些升級?目前進展如何?


以太坊 2.0 到來,會對現有以太坊生態的去中心化應用產生哪些影響?


ETH 是否值得持續投資?看完相信你會有自己的判斷。


如果將搭建應用比作造房子,那麼以太坊就提供了牆面、屋頂、地板等模塊,用戶只需像搭積木一樣把房子搭起來,因此在以太坊上建立應用的成本和速度都大大改善。以太坊的出現,迅速吸引了大量開發者進入以太坊的世界編寫出各類去中心應用,極大豐富人們對去中心應用場景的需求。

以太坊應用開發模型示意


以太坊與ETH


現有市場的加密貨幣,只是在區塊鏈技術應用在某一場景下的單一代幣。


以太坊也不例外,它的完整項目名稱是「下一代智能合約與去中心化應用平台」,Ether(以太幣)是其原生加密貨幣,簡稱 ETH。


ETH 除了可以用來與各種類型數字資產之間進行有效交換,還提供支付交易費用的機制,即我們現在做鏈上操作時所支付的 GAS 費用。GAS 費用機制的出現,即保護了以太坊網路上創建的應用不會被惡意程序隨意濫用,又因為 GAS 收入歸礦工所有,讓更多的用戶參與到以太坊網路的記賬當中成為礦工,進一步維護了以太坊網路安全與生態發展。


與 BTC 不同的是,ETH 並沒有採用 SHA256 挖礦演算法,避免了整個挖礦生態出現由 ASIC(專用集成電路)礦機主導以至於大部分算力被中心化機構控制所帶來的系統性風險。


以太坊最初採用的是 PoW(Proof of Work)的工作量證明機制,人們需要通過工作量證明以獲取手續費回報。我們經常聽說礦工使用顯卡挖礦,他們做的就是 POW 工作量證明。顯卡越多,算力越大,那麼工作量就越大,收入也就越高。


當前,整個以太坊網路的總算力大約為 870.26 TH/s,用我們熟悉的消費級顯卡來對比,英偉達 RTX 3080 的顯卡算力大約為 92-93 MH/s,以太坊網路相當於 936 萬張 3080 顯卡算力的總和。


以太坊白皮書內非常明確提到之後會將 PoW 工作證明的賬本機制升級為 POS (Proof of Stake)權益證明的賬本機制。


ETH經濟模型


與 BTC 總量 2100 萬枚不同,ETH 的總量並沒有做上限,而是在首次預售的 ETH 數量基礎上每年增發,增發數量為 0.26x(x 為發售總量)。


但也不用擔心 ETH 會無限通脹下去,長期來看,每年增發幣的數量與每年因死亡或者粗心原因遺失幣的數量大致相同,ETH 的「貨幣供應增長率」是趨近於零的。


ETH 分配模型包含早期購買者,早期貢獻值,長期捐贈與礦工收益,具體分配比例如下表。

現在每年將有 60,102,216 * 0.26 = 15,626,576 個 ETH 被礦工挖出,轉成 PoS 後,每年產出的 ETH 將減少。


目前,市場上流通的 ETH 總量約為 116,898,848 枚,總市值約為 2759 億美元。


以太坊發展歷程


1. 邊境階段(2015年):上線後不久進行了第一次分叉,調整未來挖礦的難度。此版本處於實驗階段,技術並未成熟,最初只能讓少部分開發者參與挖礦,智能合約也僅面向開發者開發應用使用,並沒有用戶參與,以太坊網路處於萌芽期。


邊境階段 ETH 價格:1.24 美元。


2. 家園階段(2016年):以太坊主網於 2016 年 3 月進行了第二次分叉,發布了第一個穩定版本。此版本是第一個成熟的正式版本,採用 100% PoW 證明,引入難度炸彈,隨著區塊鏈數量的增加,挖礦難度呈指數增長,網路的性能大幅提升,以太坊項目也進入到快速成長期。在」家園「版本里,還發生了著名的」The DAO 攻擊事件「,以太坊被社區投票硬分叉為以太坊(ETH)與以太經典(ETC)兩條鏈,V 神站在了 ETH 這邊。


家園階段 ETH 價格:12.50 美元。


3. 都會階段(2017~2019年):都會的開發又分為三個階段,升級分成了三次分叉,分別是 2017 年 10 月的「拜占庭」、2019 年 2 月底的「君士坦丁堡「、以及 2019 年 12 月的「伊斯坦布爾」。這些升級主要改善智能合約的編寫、提高安全性、加入難度炸彈以及一些核心架構的修改,以協助未來從工作量證明轉至權益證明。


在都會階段,以太坊網路正式顯現出其威力,正式進入成熟期。智能合約讓不同鏈上的加密貨幣可以互相交易,ERC-20 也在 2017 代幣發行的標准,成千上萬個項目在以太坊網路進行募資,被稱作「首次代幣發行(ICO)」,相信很多幣圈的老人都是被當時 ICO 造富效應帶進來的。到 2019 年,隨著DeFi 生態的崛起,金融產品正式成為以太鏈上最大的產業。


都會階段 ETH 價格:151.06 美元。


4. 寧靜階段(2020-2023年):與都會分三階段開發相同,寧靜階段目前預計分成三次分叉:柏林(已完成)、倫敦(即將到來)、以及後面的第三次分叉。「寧靜」階段又稱為「以太坊 2.0」,是項目的最終階段,以太坊將從工作量證明方式正式轉向權益證明,並開發第二層擴容方案,提高整個網路的運行效率。


寧靜階段可以說是以太坊網路的集大成之作,如果說前個三階段只是讓以太坊的願景展現的實驗平台,寧靜階段之後的以太坊,將正式成為完全體,不僅有完備的生態應用,超級快的處理速度,眾多網路協同發展,而且 PoS 機制會非常節約能源,真正代表了區塊鏈技術逐漸走向成熟的標志。


寧靜階段 ETH 價格:2021 年 4 月 15 日完成的柏林階段,當天價格為 2454 美元。

即將到來的倫敦協議升級

以太坊生態


以太坊的生態發展,從屬性劃可分為兩大類:一是以太坊網路生態應用建設,二是以太坊網路擴容建設。兩者相互融合,互相成就,應用需要更健壯強大的網路作為承載,網路需要功能完善的應用場景服務用戶。


先說應用生態,以太坊的生態我們又可以分為以下幾大類:


1. 去中心化自製組織(DAO)生態


什麼是去中心化自製組織?還是以我們熟悉的比特幣舉例:比特幣目前市值七千多億美金,在全球資產市值類排名第九,但比特幣並不是某一公司發布的產品,也沒有特定公司組織招聘人員進行維護。比特幣現有的一切,都源於比特幣持有者、比特幣礦工自發形成的分布式組織,他們通過投票方式規劃比特幣發展路線,自發參與維護比特幣程序與網路 —這僅僅因為只要擁有比特幣,所有人都是比特幣網路建設中的受益者,一切維護都源於自身的利益關系。


比特幣的發明與成功運行,突破了由荷蘭人創建、至今流行 400 多年的公司商業架構,開創出一種全新的、無組織架構的、全球分布式的商業模式,這就是 DAO。


再說回以太坊,以太坊的 DAO 可以由智能合約編寫,用戶自定義應用場景。簡單說就是我們規定出程序執行條件與執行范圍,真實世界裡只要觸發設定好的條件,程序就會自動執行運行,且所有過程都會在以太坊的網路上進行去中心化公開驗證,不需要經過人工或者任何第三方組織機構確認。


以太坊 DAO 生態演化出許多商業場景,有慈善機構使用 DAO 建立公開透明的捐款與使用機制,有風投機構使用 DAO 建立公平分配的風險基金。


以太坊生態的很多項目都採用 DAO 自治,代表項目有:Uniswap,AAVE,MakerDAO,Compound,Decred,Dash 等。


2. 去中心化金融(DEFI)生態


在傳統商業世界裡,我們如果需要借錢、存錢,或者買某一公司股票,或者做企業貸款、融資,只要是進行金融活動,總離不開與銀行、證券機構、會計事務所這些金融機構打交道。


而在去中心的世界裡,區塊鏈本質就是集合所有人交易記錄且公開的大賬本,我們可以非常容易的追溯到每一個錢包地址發生過的每一筆交易,查詢到任意一個錢包地址的余額信息,從而對錢包地址里的資產做評估。


舉個例子:全世界個人貸款最貴的國家是印度,印度的年輕人房貸利率目前是 8.8%,最高曾經到過 20%;與此對應,全世界個人存款利率最低的國家是日本,日本政府為了鼓勵民眾消費,在很長一段時間里銀行存款利率是負值,日本人在銀行存款不僅沒有利息,還要給銀行交保管費。理論上,如果日本人將自己的存款借與印度人,雙方都能獲得利益最大化,但現實生活中這樣的場景很難發生。一是每個國家都有外匯管制,日本人的錢並不容易能給到印度人,二是印度人的信用如何日本人也不好評估,大家沒有統一標准,萬一借出去的錢無法歸還,不能沒了收益還要蒙受損失。


但在去中心的世界裡,這樣的事情就簡單的多。


如果印度人的錢包地址里有比特幣,我們就可以利用智能合約,印度人將自己的比特幣質押進去,根據比特幣當時的價格,系統自動給印度人一個授信額度,印度人就可以拿著這個額度去和日本人借款,並規定好還款的周期與利率。如果印度人違約,合約自動將印度人質押進去的比特幣扣除,優先保障日本的權利,這樣,日本人不用擔心安全問題放心享受收益,印度人也有了更多的款項做為流動資金。


這個例子就是去中心金融的簡單應用,實際上,這就是我們參與 DEFI 挖礦是質押理財的原理 —— 當然真正應用實現演算法與場景要復雜的多。


DEFI 根據場景不同,又可以分為很多賽道,比如穩定幣、預言機、AMM 交易所、衍生品、聚合器等等。


DEFI 代表項目有:Dai,Augur,Chainlink,WBTC,0x,Balance,Liquity 等。


3. 非同質化代幣(NFT)生態


世界名畫《蒙娜麗莎》,只有達·芬奇的原版可以展覽在法國盧浮宮博物館,哪怕現代的技術可以無比精細地復刻出來,仿品都不具備原版的收藏價值。


這就是 NFT 的應用場景。NFT是我們可以用來表示獨特物品所有權的代幣,它們讓我們將藝術品、收藏品甚至房地產等現實事物唯一代幣化。雖然文件(作品)本身是可以無限復制,但代表它們的代幣在鏈上可以被追蹤,並為買家提供所有權證明。


相比現實中實物版權、物權的雙重交割相比,NFT 只需要交割描述此物品的唯一代幣。NFT 作品往往存儲在如 IPFS 這樣的分布式存儲網路里,隨用隨取,永不丟失,加之交割簡單方便,很快吸引了大量玩家與投資者收藏轉賣,NFT 出現也給藝術家提供了全新的收入模式。


類似 DEFI 生態,NFT 生態根據應用場景不同也產生了不同賽道,目前比較火熱的賽道有 NFT 交易平台,NFT 游戲 平台,NFT 藝術品平台, NFT 與 DEFI 結合在一起的金融平台。


NFT 代表項目有:CryptoKitties,CryptoPunks,Meebits,Opensea,Rally,Axie Infinity,Enjin Coin,The Sandbox 等。


4. 標准代幣協議(ERC-20)生態


與 NFT 非同質化代幣所對應的,就是同質化代幣。比如我們使用的人民幣就是一種同質化代幣,我們可以用人民幣進行價值交換,即使序號不同也不影響其價值,如果面額相同,不同的鈔票序號對持有者來說沒有區別。


BTC,ETH 和所有我們熟知的加密貨幣,都屬於同質化代幣。同種類的一個比特幣和另一個比特幣沒有任何區別,規格相同,具有統一性。在交易中,只需關注代幣交接的數量即可,其價值可能會根據交換的時間間隔而改變,但其本質並沒有發生變化。


以太坊的 ERC-20 就是定義這種代幣的標准協議,任何人都可以使用 ERC-20 協議,通過幾行代碼,發布自己在以太坊網路上的加密貨幣。


現在,以太坊網路上運行的代幣種類有上百萬個,上邊提到的項目,大多也在以太坊網路中發布了自己的同質化代幣。


ERC-20 代表項目有:USDT,USDC,WBTC 等。


以太坊網路擴容性


我們先引入一個概念:區塊鏈的不可能三角,即無論何種方法,我們都無法同時達到可擴展、去中心化、安全,三者只能得其二。


這其實很好理解,如果我們要去中心化和安全,就需要更多有節點參與網路進行驗證,從而導致驗證人增多、網路效率降低,擴展性下降。網路性能建設就是在三者之間找到平衡點。


用數據舉例,目前比特幣可處理轉賬 7 筆 / 秒,以太坊是 25 筆 / 秒,而 VISA 平均為 4500 筆 / 秒,峰值則達每秒上萬筆。這種業務處理能力的差別,我們就可以簡單理解為是「吞吐量」的差距。而想要提高吞吐量,則需要擴展區塊鏈的業務處理能力,這就是所謂的擴展性。


根據優化方法不同,以太坊網路性能擴容方案可以分為:


1. Layer 1 鏈上擴展,所有交易都保留在以太坊上的擴展解決方案,具有更高的安全性。


鏈上擴展的本質還是改進以太坊主鏈本身,使整個系統擁有更高的拓展性與運行效率。一般的方法有兩種,要麼改變共識協議,比如 ETH 將從 PoW 轉變為 PoS;要麼使用分片技術,優化方法使網路具有更高效率。


2. Layer 2 鏈下擴展,在以太坊協議之上分層單獨做各場景解決方案,具有更好的擴展性。


鏈下擴展可以理解為把計算、交易等業務處理場景拿到以太坊主鏈之外計算,最後將計算好的結果傳回主鏈,主鏈只反映最終的結果而不用管過程,這樣,無論多麼復雜的應用都不會對主鏈產生影響。


我們並不需要明白具體技術實現,只需知道:相比 Layer 1 方案,Layer 2 方案網路不會干擾底層區塊鏈協議,可以替 Layer 1 承擔大部分計算工作,從而降低主網路的負擔提高網路業務處理效率,是目前公認比較好的擴容方案。


以太坊2.0


終於講到以太坊 2.0,回到主題。


通過回顧以太坊的發展 歷史 ,以太坊 2.0 並不是新項目,它只是以太坊開發進程的最後一個階段,它將由整個以太坊生態多個團隊協同完成,目標是使以太坊更具可擴展性、更安全和更可持續,最終成為主流並為全人類服務。


ETH2建設目標:


1. 更具可擴展性。每秒支持 1000 次交易,以使應用程序使用起來更快、更便宜。


2. 更安全。以太坊變得更加安全,以抵禦所有形式的攻擊。


3. 更可持續。提高網路性能的同時減少對能源的消耗,更好地保護環境。


最重要的變化,ETH2 將從 ETH1 使用的 PoW(Proof of Work)工作量證明機制升級為 POS (Proof of Stake)權益證明機制。不再以算力做為驗證方式,而是通過質押加密貨幣的數量做為驗證手段。礦工不需要顯卡也能挖礦,既節省了時間成本與電力成本,又提高了 ETH 的利用率,非常類似錢存在銀行獲得利息。


ETH2 主要使用的技術是分片分層技術實現整個網路擴容。


ETH2 升級將分為三個階段進行:


1. 階段0(正在進行):信標鏈的創建與合並。信標鏈是 ETH2 的主鏈,如同人類的大腦,是 ETH2 得以運行的基礎。


2. 階段1(預計2022年):分片鏈的創建與應用。當信標鏈與 ETH1 合並完成後,就進入分片鏈的開發階段。分片鏈可以理解為將 ETH2 主鏈的整塊數據按一定規則拆分存放,單獨建立新鏈處理,用來分擔主鏈上的數據壓力,目前規劃是建立 64 條分片鏈。


舉個例子,從北京到上海,原來的交通工具只有一條公路,所有的車輛都需要在上邊運行,就會非常擁擠;現在通過分片技術,多出來高鐵、飛機等交通方式,分流的車輛同時到達速度更快,這就是分片鏈起到的作用。

分片鏈與主鏈交互示意圖


3. 階段2(預計2023年):整個網路功能的融合。到了此階段,整個系統的功能全面開始融合,分片鏈的功能會更加強大,新的處理機制開始支持賬戶、智能合約、開發工具的創建,新的生態應用等。


此階段是以太坊網路的最終形態,網路性能得到全面提升,生態應用全面爆發。但要服務全人類,ETH2 每秒 1000 次的交易效率顯然還是遠遠不夠,以太坊也會為它的目標持續優化下去。


ETH2對於大家有什麼影響?


1. 對於以太坊生態開發者。ETH2 在部署應用的時候,是需要選擇應用在哪條分片網路進行部署,造成這種差異的原因是跨分片通信不同步,這就意味著開發者需要根據自己發展計劃做不同的組合。


2. 對與 ETH 持幣者。ETH2 與 ETH1 數據完全同步,代幣也不會有任何變化,你可以繼續使用現在的錢包地址繼續持有 ETH。


3. 對於礦工。雖然 PoW 與 PoS 還會並行一段時間,可以預計的 PoW 礦機的產出會越來越少,應該開始減少 PoW 礦機的投資,開始轉向 PoS 機制。


4. 對於用戶。ETH2 速度更快,交易手續費更低,網路體驗會非常好,唯一值得注意的是,由於 Dapp 部署在不同的分片網路上,可能需要手動選擇應用的網路選項。


ETH是否值得投資?


ETH 是除了 BTC 以外市場的風向標,明確了解 ETH2 非常有助於我們理解其他區塊鏈項目,理解二級市場。


簡單總結幾個點吧:


1. 通過以太坊的項目分析,我們可以清晰地看到:在比特幣之後,以太坊項目的發展史就是目前區塊鏈應用生態的發展史。無論 DEFI 生態,NFT 生態,DAO 生態還是代幣、合約、協議生態,其實在以太坊發布白皮書時已有預見,後來出現的項目,都是圍繞以太坊做驗證。


2. 以太坊的聯合創始人里,只有 V 神還在為以太坊事業做貢獻,但這並不影響以以太坊繁榮發展。以太坊初始團隊只是創建了它,後續的發展是社區、開發者、礦工與用戶共同建立的結果,現在的以太坊早已不是某一個人的思維,它是所有以太坊生態參與者共同的結晶,它屬於全人類。


3. 以太坊在過去的幾年一直沿著既定的開發軌跡發展,雖然中途一度出現過危機,以太坊「被死亡」了好幾百次,以太坊還是頑強的發展下來,並且擁有了繁榮生態。ETH2 還要兩三年時間才能落地,中間也充滿變數,比如其他的公鏈搶佔先機,但可以預見,ETH2 後的以太坊會更加健壯。


4. 不要在抱有任何 BTC 會死亡,區塊鏈行業會消失這樣的偽命題。BTC、ETH 讓我們看到了突破原有公司組織架構,一種全新無組織架構的商業模式存在,這種商業模式顯然更符合這個時代的發展需求,無論項目地發起團隊在不在,無論各國政府如何打壓,只要技術對人類有貢獻,就會由人員自發組織維護,區塊鏈技術是革命。


5. ETH2 的上線,短期看 PoW 獎勵與 PoS 獎勵並行,可能會讓 ETH 總通脹率短期內飆升,長期看 ETH 通脹率始終保持平衡。加上 ETH 本身的生態與應用場景,ETH是值得投資的,目前看不到有其他公鏈代替以太坊公鏈的可能性,ETH2 的上線,甚至會對其他公鏈造成「虹吸效應」,萬鏈歸一。

#比特幣[超話]# #數字貨幣#

⑸ 以太坊聯合創始人表示,"匯總將推動ETH 2.0達到100k TPS

TPS度量標准被認為是任何區塊鏈可擴展性的標准。

高TPS意味著經過考驗的網路,能夠擴展和快速處理用戶交易。這部分有助於將區塊鏈定位為集中式提供商的穩定替代方案。

目前,比特幣提供4 TPS,而以太坊則提高到15TPS。NEO和Cardano等較小的加密貨幣稱正在建立達到1,000 TPS的框架。

現在,隨著ETH 2.0的到來,該協議可能會逐漸看到超過100,000 TPS,並計劃隨著「分片」的部署最終擴展到超過一百萬。

如果發生這種情況,公共區塊鏈比VISA慢的流行論點將被推翻。

六位數TPS即將進入以太坊

以太坊現年26歲的聯合創始人Vitalik Buterin在本周早些時候發布了推文:

ETH 2.0對數據的擴展將先於一般計算,解釋了以ETH 1.0作為數據層的2-3k TPS,然後用ETH 2.0達到100k TPS(階段1)。

-vitalik.eth(@VitalikButerin)2020年6月30日

Buterin在線評論中指出「匯總可能會增加到成千上萬個,」並補充說,碎片不需要「彼此同步交談,從而能夠實現結合了碎片可伸縮性的同步匯總。」

在相關的Reddit帖子上,Buterin給出了數學公式:

「64個分片*每個分片每個塊256 kB / 12s插槽時間= 1.33 MB /秒。匯總:如果打包得當,則每tx約10-12個位元組。1.33m /(10…12)> 100k。」

他補充說,計算的前提是匯總「准備就緒,第1階段分片准備就緒,並且人們實際使用了該技術。」

*截至6月30日的以太坊的TPS

"匯總"是什麼?

對於初學者而言,匯總是第2層框架,可幫助將網路擴展到當前級別的倍數。匯總以其最基本的形式以壓縮形式存儲在以太坊區塊鏈上的交易數據,而繁重的計算則發生在鏈下。

一個例子是樂觀匯總,它最初由Buterin在2018年提出。一些團隊也在構建特定於應用程序的zk-Rollup,並在相同的體系結構設計上進行迭代以滿足他們的需求。

⑹ 華為5700交換機eth介面做什麼用的怎麼使用它

華為5700交換機eth可以作為管理口使用,交換機操作系統丟了 ,但是我可以通過eth口上傳操作系統文件,跟console口的功能是類似的。

華為交換機從網橋發展而來,屬於OSI第二層即數據鏈路層設備。它根據MAC地址定址,通過站表選擇路由,站表的建立和維護由CISCO思科交換機自動進行。

華為在美國、德國、瑞典、俄羅斯、印度以及中國的北京、上海和南京等地設立了多個研究所,近一半的員工從事著產品與解決方案的研發工作。

(6)eth存儲結構擴展閱讀

華為是全球領先的電信解決方案供應商。我們擁有熱誠的員工和強大的研發能力,快速響應客戶需求,提供端到端的客戶化產品、解決方案和服務,全力幫助客戶商業成功,並通過我們的共同努力,不斷豐富人們的溝通和生活。

華為產品和解決方案涵蓋移動(LTE/HSPA/WCDMA/EDGE/GPRS/GSM, CDMA2000 1xEV-DO/CDMA2000 1X, TD-SCDMA和WiMAX)

核心網(IMS, Mobile Softswitch, NGN)、網路(FTTx, xDSL, 光網路, 路由器和LAN Switch)、電信增值業務(IN, mobile data service, BOSS)和終端(UMTS/CDMA)等領域。

⑺ 主流幣輪流帶動行情,ETH爆發的原因並不復雜

近兩日主流幣接連發威,前日萊特領頭日漲幅久違的超過4%,帶動其他主流幣突破一直以來的震盪區間。

今日清晨ETH開啟爆拉模式接力,日漲幅超過7%,站上3月份以來首次觸及的260美元,同時也為其他主流貨幣把握住了昨日突破後續漲的機會,可謂是主流幣上漲會遲到,但永遠不會缺席,特別是ETH這樣在主流幣種地位也十分重要的貨幣。

關於以太坊的上漲原因市場上眾說紛紜,但我們觀察現在市場上能對ETH上漲起到重要作用的原因主要有以下三個:

1、中國國家層面支持的區塊鏈服務網路BSN,已與包括Tezos,NEO,Nervos,EOS、IRISnet和以太坊在內的6條公共鏈展開合作。從8月10日開始,這六條公鏈上的開發人員將能夠使用來自BSN海外數據中心的數據存儲和帶寬來構建DApp和運行節點。全球用戶將通過網路的跨鏈結構以及與中國銀聯的合作關系,訪問中國的企業鏈和財務數據。

2、前段時間DeFi爆發之時,市場上很多投資者都在盯著ETH,畢竟大部分爆發的DeFi運用是基於以太坊公鏈上,作為以太坊的taken,ETH確實有爆發的理由。或許是因為比特幣的低迷壓制,又或者是場內資金都流向山寨幣以及DeFi項目,ETH始終沒有出現爆發性的行情。

但暫時沒有爆發依然掩蓋不了ETH的潛在價值,我們的文章中也一直推薦支持大家值得購買的幣種中只有比特幣、ETH和三大平台幣,而ETH是唯一一個以項目應用潛力進入的,所以當前資金注意到ETH也合乎常理。

3、昨日,有開發者表示以太坊2.0的最終測試網將於8月4日啟動,而主網則可能最早在11月4日到來。以太坊2.0幾乎是今年接下來的時間里最引人矚目的話題,在比特幣減半後,值得關注的項目有DeFi、Flicoin、波卡以及ETH2.0。

雖然Flicoin還未正式上線,但前期礦機和FIL期貨的表現確實非常好,不排除這幾個話題有市場熱炒的原因,但市場就是這樣,一旦經過大家熱炒過的話題,時間便無法維持太久,這也是大家對ETH2.0就顯得更為重視的原因,因為一旦大家對其他三個熱點審美疲勞後,ETH就是接下來最亮的那顆星。

當前主流幣接連發威,很多人認為是不是牛市已來,但我們暫時還不能樂觀,畢竟比特幣當前處的位置不足以支撐起「牛市」這個話題,真正的牛市效應還是需要比特幣來帶領。

清晰可見的是,隨著主流幣接連的開漲,近兩日資金量確實有向主流貨幣資金迴流的趨勢,而且,行情波動起來才是最重要的,無論是漲跌,只要有交易的空間,結果都會比保持風平浪靜要好。

回到行情上,近兩日市場有逐漸激活的現象,當然很多人還是抱著會是誘多的可能性,這一點絕對是有道理的,無論行情漲的再好,都應該預防著莊家砸盤的風險,畢竟當莊家開動的時候,基本面和技術面都顯得蒼白無力。

當前日線表現逐漸轉好,價位已經創近一個月的新高,而且昨日回踩過五日均線才回踩,雖然是受ETH的帶動,但至少從技術指標來看,走的相當合理。當前五日均線有抬頭跡象,MACD拐頭向上,從盤面上看,是持幣看漲的走勢。

略顯不足的是,價格接連上漲,量能卻未及時跟上,其實主要原因還是昨日白天的成交比較拖後腿,能在今日清晨上漲時追上來這么高的量能,說不上表現差。

小時線方面基本上符合我們昨日下午文章的推測,5/10日均線離30日均線太遠,需要等待30日均線上行確認支撐位,最後幾根均線糾纏一下才有機會上行,而且以往第一次回調的時候基本上不會直接就反方向,昨日走勢是完美的驗證。

目前也是處於回調狀態中,這對行情不一定是壞事,回調確認支撐位的上漲往往更踏實,持續拉漲的行情才應該擔心。

回到一開始的話題,如果行情是誘多,現在上車了後期砸盤怎麼辦?但是如果不上車的話行情就這樣上去了踏空更可惜。

這個問題基本上沒有標准答案,因為行情漲的再厲害、在牛市中我們也要提防主力時不時的反噬,更何況目前還沒有正式走出來,所以我們一直在強調做單策略。

像這種行情,看成交量表現就知道,是有莊家在刻意配合拉盤的,而且這兩波上漲令空頭損失慘重,莊家畢竟不是做慈善的,等多頭籌碼多起來,砸盤的概率也會增加。

當前這樣的節奏,如果是從低位拿上來的,出一小部分落袋為安還是可以接受的,剩下的倉位就拿著繼續等,設好止損,若是行情繼續上漲,再在回調的時候選擇加倉。

不管是持幣想加倉還是現在想進場的小夥伴,一定要踩好節奏,行情在突破的一瞬間和漲至當下漲幅已經過高的情況下直接追高風險就會很大,最好的介入時間點就是在等回調的時候,我們在行情回調的時候能感受到震盪是否平穩,是否見底,這個事情加倉或買入是最安全的,其次,止損是我們做這些操作的保障,沒有止損就會將風險無限放大。

⑻ 以太坊解讀——Recursive Length Prefix協議圖解(上)

在以太坊中,採用了一種名為Recursive Length Prefix(RLP)的方法對交易、賬號、合約等基礎的數據結構進行序列化處理,從而實現對鏈上數據的網路傳輸和持久化存儲。RLP作為最為底層的編碼方法,其重要性是不言而喻。因此,網上介紹RLP的文章也不少,但是由於RLP是二進制編碼,又涉及到嵌套結構,造成編碼過程的可讀性較差,在學習中過程中,也一直沒有找到完整的、易於理解的說明,總是繞在各種規則之中,且不能"自拔",著實有點無奈。所以,在本文中,採用圖形化的解釋和舉例的方法,幫助大家理解RLP嵌套等特點、編解碼過程等。

和其他的序列化協議不同,RLP只支持兩種數據類型:
1)byte數組,可以是二進制數組,當然也可以是字元串;
2)byte數組的數組,也就是列表。並支持列表內的嵌套。
對於其他的數據類型,RLP都不支持,需要用戶自己先轉化為數組和列表的類型。

從RLP的命名中就可以看出兩個關鍵字:一個是遞歸Recursive和前綴Prefix。首先,關於遞歸,也就是嵌套結構,結構上非常接近「樹」,在Ethereum WiKi中,更是直接地採用樹的items來進行命名,葉子節點(leaf tress)來存儲「byte數組」,嵌套的節點就是一個樹的分叉(branching trees)。

比如,需要是對如下對象進行RLP的編碼,該對象中包含一個字元數組的列表、一個單個字元的字元數組、一個空字元數組。

< <[cat],[dog]>, [0xbf], [] >

將該對象展開為樹的結構,就如下圖。其中[0xbf]和[]屬於字元數組。<[cat], [dog]>屬於列表,可以嵌套展開,再根據各個節點,進行編碼。然後,對於不同長度的數組和列表,編碼的方法略有不同,這個也就是Length Prefix相關的內容,和「編碼過程」相關的內容,在第二節進行詳細地說明。

關於為什麼以太坊需要單獨設計一種序列化協議,目前還沒有找到官方的描述。但與其他序列化方法相比,RLP協議具有一些直接的優點,比如:

1)在以太坊中,最小貨幣單位為1 Wei,並且1 ETH = 10^18 Wei,所以在編碼中,需要考慮對很大的整數類型的序列化,在RLP中採用去除前導零(leading zero)的大端big-endian方式,可以有效處理大整數;

2)使用了靈活的長度前綴來表示數據的實際長度,並且使用遞歸的方式能編碼相當大的數據;

3)為了實現在鏈上節點的「共識Consensus」,防止出現數據的不一致,以太坊中並不支持浮點數類型,所以一般的序列化協議也不適用。

編碼的過程就是將嵌套結構(nested sequence)的樹形結構,添加長度前綴(Length Prefix)後,轉化為順序結構(flat sequence)的過程。添加長度前綴的目的,就是在反序列化時,可以根據長度前綴(Length Prefix),將(flat sequence)重構出樹的結構(nested sequence)。

關於前綴的生成規則,《Ethereum Yellow Paper》[2]給出了非常形式化的數學符號描述,漂亮是非常漂亮,可惜不是人類的語言,非常難於理解和表達。網上大部分文章的寫法也是引用了Yellow Paper中的5個文字形式上的描述,把原文和翻譯一並給出如下:

將上面這個「長度」Length Prefix的編碼規則,通過「決策樹」可以圖形化的表達如下圖。

首先,根據編碼的類型,進行分類,分為「位元組數組」和「列表」兩類;第二,根據不同的長度,編碼的長度前綴不同。若待編碼對象的長度小於56,就是把長度和「前綴字元」進行求和,佔用一個位元組。反之,待編碼對象的長度大於56,其前綴需要多個位元組,第一個位元組,求出「長度」所佔的位元組數,再加上「前綴字元」,比如:長度為56,佔用1位元組。然後對「長度」進行編碼,其實也是一個嵌套的過程。

還是以上文中的例子,該編碼對象,已經完成了「樹的構建」,然後根據「長度前綴」的原則,對樹的各個項目進行長度前綴的計算。

< <[cat],[dog]>, [0xbf], [] >

-對於<[cat],[dog]>屬於嵌套數組,需要對內部各項非常進行長度編碼的計算
  `對於[cat],屬於字元數組,且長度為3,其對應的長度為0x80+3 = 0x83
  `對於[dog],屬於字元數組,且長度為3,其對應的長度為0x80+3 = 0x83
  `<[cat],[dog]>整體上,其長度前綴為0xc0 + 2(新增的兩個子項的長度所佔用的位元組)+6(待編碼字元的長度)=0xC8
- 對於[0xbf], 屬於字元數組,且長度為1,其對應的長度為0x80+1 = 0x81
- 對於[dog],屬於字元數組,且長度為3,其對應的長度為0x80+3 = 0x83
- 對於[],屬於字元數組,且長度為0,其對應的長度為0x80+0=0x80
總體上,增加的「長度編碼」的位元組數為6,加上原來的長度為10,所以整個對象的長度前綴為0xC0+16d=0xD0。所以最後的編碼結果為:
D0 C8 83636174 83646F67 81B7 83646F67 80

解碼過程將在 《以太坊解讀——Recursive Length Prefix協議圖解(下)》 一文中,給出圖形化的解讀說明。

⑼ 【深度知識】以太坊數據序列化RLP編碼/解碼原理

RLP(Recursive Length Prefix),中文翻譯過來叫遞歸長度前綴編碼,它是以太坊序列化所採用的編碼方式。RLP主要用於以太坊中數據的網路傳輸和持久化存儲。

對象序列化方法有很多種,常見的像JSON編碼,但是JSON有個明顯的缺點:編碼結果比較大。例如有如下的結構:

變數s序列化的結果是{"name":"icattlecoder","sex":"male"},字元串長度35,實際有效數據是icattlecoder 和male,共計16個位元組,我們可以看到JSON的序列化時引入了太多的冗餘信息。假設以太坊採用JSON來序列化,那麼本來50GB的區塊鏈可能現在就要100GB,當然實際沒這么簡單。

所以,以太坊需要設計一種結果更小的編碼方法。

RLP編碼的定義只處理兩類數據:一類是字元串(例如位元組數組),一類是列表。字元串指的是一串二進制數據,列表是一個嵌套遞歸的結構,裡面可以包含字元串和列表,例如["cat",["puppy","cow"],"horse",[[]],"pig",[""],"sheep"]就是一個復雜的列表。其他類型的數據需要轉成以上的兩類,轉換的規則不是RLP編碼定義的,可以根據自己的規則轉換,例如struct可以轉成列表,int可以轉成二進制(屬於字元串一類),以太坊中整數都以大端形式存儲。

從RLP編碼的名字可以看出它的特點:一個是遞歸,被編碼的數據是遞歸的結構,編碼演算法也是遞歸進行處理的;二是長度前綴,也就是RLP編碼都帶有一個前綴,這個前綴是跟被編碼數據的長度相關的,從下面的編碼規則中可以看出這一點。

對於值在[0, 127]之間的單個位元組,其編碼是其本身。

例1:a的編碼是97。

如果byte數組長度l <= 55,編碼的結果是數組本身,再加上128+l作為前綴。

例2:空字元串編碼是128,即128 = 128 + 0。

例3:abc編碼結果是131 97 98 99,其中131=128+len("abc"),97 98 99依次是a b c。

如果數組長度大於55, 編碼結果第一個是183加數組長度的編碼的長度,然後是數組長度的本身的編碼,最後是byte數組的編碼。

請把上面的規則多讀幾篇,特別是數組長度的編碼的長度。

例4:編碼下面這段字元串:

The length of this sentence is more than 55 bytes, I know it because I pre-designed it
這段字元串共86個位元組,而86的編碼只需要一個位元組,那就是它自己,因此,編碼的結果如下:

184 86 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
其中前三個位元組的計算方式如下:

184 = 183 + 1,因為數組長度86編碼後僅佔用一個位元組。
86即數組長度86
84是T的編碼
例5:編碼一個重復1024次"a"的字元串,其結果為:185 4 0 97 97 97 97 97 97 ...。
1024按 big endian編碼為004 0,省略掉前面的零,長度為2,因此185 = 183 + 2。

規則1~3定義了byte數組的編碼方案,下面介紹列表的編碼規則。在此之前,我們先定義列表長度是指子列表編碼後的長度之和。

如果列表長度小於55,編碼結果第一位是192加列表長度的編碼的長度,然後依次連接各子列表的編碼。

注意規則4本身是遞歸定義的。
例6:["abc", "def"]的編碼結果是200 131 97 98 99 131 100 101 102。
其中abc的編碼為131 97 98 99,def的編碼為131 100 101 102。兩個子字元串的編碼後總長度是8,因此編碼結果第一位計算得出:192 + 8 = 200。

如果列表長度超過55,編碼結果第一位是247加列表長度的編碼長度,然後是列表長度本身的編碼,最後依次連接各子列表的編碼。

規則5本身也是遞歸定義的,和規則3相似。

例7:

["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]
的編碼結果是:

248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
其中前兩個位元組的計算方式如下:

248 = 247 +1
88 = 86 + 2,在規則3的示例中,長度為86,而在此例中,由於有兩個子字元串,每個子字元串本身的長度的編碼各佔1位元組,因此總共佔2位元組。
第3個位元組179依據規則2得出179 = 128 + 51
第55個位元組163同樣依據規則2得出163 = 128 + 35

例8:最後我們再來看個稍復雜點的例子以加深理解遞歸長度前綴,

["abc",["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]]
編碼結果是:

248 94 131 97 98 99 248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
列表第一項字元串abc根據規則2,編碼結果為131 97 98 99,長度為4。
列表第二項也是一個列表項:

["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]
根據規則5,結果為

248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
長度為90,因此,整個列表的編碼結果第二位是90 + 4 = 94, 佔用1個位元組,第一位247 + 1 = 248

以上5條就是RPL的全部編碼規則。

各語言在具體實現RLP編碼時,首先需要將對像映射成byte數組或列表兩種形式。以go語言編碼struct為例,會將其映射為列表,例如Student這個對象處理成列表["icattlecoder","male"]

如果編碼map類型,可以採用以下列表形式:

[["",""],["",""],["",""]]

解碼時,首先根據編碼結果第一個位元組f的大小,執行以下的規則判斷:

1.如果f∈ [0,128),那麼它是一個位元組本身。

2.如果f∈[128,184),那麼它是一個長度不超過55的byte數組,數組的長度為 l=f-128

3.如果f∈[184,192),那麼它是一個長度超過55的數組,長度本身的編碼長度ll=f-183,然後從第二個位元組開始讀取長度為ll的bytes,按照BigEndian編碼成整數l,l即為數組的長度。

4.如果f∈(192,247],那麼它是一個編碼後總長度不超過55的列表,列表長度為l=f-192。遞歸使用規則1~4進行解碼。

5.如果f∈(247,256],那麼它是編碼後長度大於55的列表,其長度本身的編碼長度ll=f-247,然後從第二個位元組讀取長度為ll的bytes,按BigEndian編碼成整數l,l即為子列表長度。然後遞歸根據解碼規則進行解碼。

以上解釋了什麼叫遞歸長度前綴編碼,這個名字本身很好的解釋了編碼規則。

(1) 以太坊源碼學習—RLP編碼( https://segmentfault.com/a/1190000011763339 )
(2)簡單分析RLP編碼原理
( https://blog.csdn.net/itchosen/article/details/78183991 )

⑽ 區塊鏈結構層是什麼

區塊鏈總共有六個層級結構,這六個層級結構自下而上是:數據層、網路層、共識層、激勵層、合約層、應用層。

數據層——數據層是區塊鏈六個層級結構裡面的最底層。數據層我們可以理解成資料庫,只不過對於區塊鏈來說,這個資料庫是不可篡改的、分布式存儲的資料庫,也就是所謂的分布式賬本。

合約層——合約層主要包括各種腳本、代碼、演算法機制、智能合約,是區塊鏈可編程的基礎。我們說的智能合約便屬於合約層。如果說比特幣系統不夠智能,那麼以太坊提出的智能合約則能夠滿足許多應用場景。合約層的原理主要是將代碼嵌入到區塊鏈系統上,用這種方式來實現能夠自定義的智能合約。這樣一來,在區塊鏈系統上,一旦觸發了智能合約的條款,系統就能夠自動執行命令。

網路層——區塊鏈的網路系統,本質上是一個P2P(點對點)網路,點對點意味著不需要一個中間環節或者中心化伺服器來操控這個系統,網路中的所有資源和服務都是分配在各個節點手中的,信息的傳輸也是兩個節點之間直接往來就可以了。不過,需要注意的是P2P(點對點)並不是中本聰發明的,區塊鏈只是融合了這一技術而已。所以,區塊鏈的網路層實際上就是一個特別強大的點對點網路系統。在這個系統上,每一個節點既可以生產信息,也可以接收信息,就好比發郵件,你既可以編寫自己的郵件,也可以收到別人給你發送的郵件。

應用層——應用層就是區塊鏈的各種應用場景和案例,我們現在說的區塊鏈+就是所謂的應用層。目前已經落地的區塊鏈應用主要是搭建在ETH、EOS等公鏈上的各類區塊鏈應用,博彩、游戲類的應用比較多。真正實用的區塊鏈落地應用,目前有由CoinBank投資的全球首條物聯網落地應用。

共識層——在區塊鏈的世界裡,共識,簡單來說就是全網要依據一個統一的、大家一致同意的規則來維護更新區塊鏈系統這個總賬本,類似於更新數據的規則。讓高度分散的節點在去中心化的區塊鏈網路中高效達成共識,是區塊鏈的核心技術之一,也是區塊鏈社區的治理機制。目前主流的共識機制演算法有:比特幣的工作量證明(POW)、以太坊的權益證明(POS)、EOS的委託權益證明(DPOS)等等。數據層、網路層、共識層這三層保證了區塊鏈上有數據、有網路、有規則。

激勵層——激勵層就是所謂的挖礦機制,挖礦機制其實可以理解成激勵機制:你為區塊鏈系統做了多少貢獻,你就可以得到多少獎勵。用這種激勵機制,能夠鼓勵全網節點參與區塊鏈上的數據記錄和維護工作。

鏈喬教育在線旗下學碩創新區塊鏈技術工作站是中國教育部學校規劃建設發展中心開展的「智慧學習工場2020-學碩創新工作站 」唯一獲準的「區塊鏈技術專業」試點工作站。專業站立足為學生提供多樣化成長路徑,推進專業學位研究生產學研結合培養模式改革,構建應用型、復合型人才培養體系。

熱點內容
量子礦機什麼意思 發布:2025-07-15 04:45:31 瀏覽:320
比特幣的全球算力 發布:2025-07-15 04:35:09 瀏覽:570
幣圈的利潤是怎麼計算的 發布:2025-07-15 04:35:07 瀏覽:847
幣圈投資者自述 發布:2025-07-15 04:25:34 瀏覽:62
bcd是什麼礦池 發布:2025-07-15 04:19:04 瀏覽:553
stata的交叉項怎麼去中心化 發布:2025-07-15 03:55:40 瀏覽:848
比特幣轉賬必須聯網嗎 發布:2025-07-15 03:53:47 瀏覽:771
訂購期貨礦機 發布:2025-07-15 03:53:39 瀏覽:62
區塊鏈相關游戲 發布:2025-07-15 03:30:18 瀏覽:940
trxmarket交易所 發布:2025-07-15 03:06:46 瀏覽:957