ltc4020铅酸电池
A. 纯电动汽车充电需求有哪些
纯电动汽车充电需求有哪些
1
、充电快速化
相比发展前景良好的镍氢和锂离子动力蓄电池而言,传统铅酸类蓄电池以其技术成熟、
成本低、电池容量大、跟随负荷输出特性好和无记忆效应等优点,但同样存在着比能量低、
一次充电续驶里程短的问题。因此,在目前动力电池不能直接提供更多续驶里程的情况下,
如果能够实现电池充电快速化,从某种意义上也就解决了电动汽车续驶里程短这个致命弱
点。
2
、充电通用化在多种类型蓄电池、多种电压等级共存的市场背景下,用于公共场所的充电装置必须
具有适应多种类型蓄电池系统和适应各种电压等级的能力,即充电系统需要具有充电广泛
性,具备多种类型蓄电池的充电控制算法,可与各类电动汽车上的不同蓄电池系统实现充
电特性匹配,能够针对不同的电池进行充电。因此,在电动汽车商业化的早期,就应该制
定相关政策措施,规范公共场所用充电装置与电动汽车的充电接口、充电规范和接口协议
等。
3
、充电智能化
制约电动汽车发展及普及的最关键问题之一,是储能电池的性能和应用水平。优化电
池智能化充电方法的目标是要实现无损电池的充电,监控电池的放电状态,避免过放电现
象,从而达到延长电池的使用寿命和节能的目的。充电智能化的应用技术发展主要体现在
以下方面:
●优化的、智能充电技术和充电机、充电站;
●电池电量的计算、指导和智能化管理
;
●电池故障的自动诊断和维护技术等。
4
、电能转换高效化
电动汽车的能耗指标与其运行能源费紧密相关。降低电动汽车的运行能耗,提高其经
济性,是推动电动汽车产业化的关键因素之一。对于充电站,从电能转换效率和建造成本
上考虑,应优先选择具有电能转换效率高,建造成本低等诸多优点的充电装置。
5
、充电集成化
本着子系统小型化和多功能化的要求,以及电池可靠性和稳定性要求的提高,充电系
统将和电动汽车能量管理系统集成为一个整体,集成传输晶体管、电流检测和反向放电保
护等功能,无需外部组件即可实现体积更小、集成化更高的充电解决方案,从而为电动汽
车其余部件节约出布置空间,大大降低系统成本,并可优化充电效果,延长电池寿命电池充电
解决方案
事实上,所有
3G
手机都采用锂离子电池作为主电源。由于散热及空间的限制,设计师必须
仔细考虑选用何种类型的电池充电器,以及还需要哪些特性来确保对电池进行安全及精确
的充电。
线性锂离子电池充电器的一个明显趋势是封装尺寸继续减小。但值得关注的是在充电周期
(
尤其在高电流阶段
)
冷却
IC
所需的板空间或通风条件。充电器的功耗会使
IC
的接合部温
度上升。加上环境温度,它会达到足够高的水平,使
IC
过热并降低电路可靠性。此外,如
果过热,许多充电器会停止充电周期,只有当接合部温度下降后才恢复工作。如果这种高
温持续存在,那么
充电器“停止和开始”的反复循环也将继续发生,从而延长充电时间。
为减少这些风险,用户只能选择减小充电电流来延长充电时间或增大板面积来散热。因此,
由于增加了
PCB
散热面积及热保护材料,整个系统成本也将上升。
对此问题有两种解决方案。首先,需要一种智能的线性锂离子电池充电器,它不必为担心
散热而牺牲
PCB
面积,并采用一种小型的热增强封装,允许它监视自己的接合部温度以防
止过热。如果达到预设的温度阈值,充电器能自动减少充电电流以限制功耗,从而使芯片
温度保持在安全水平。第二种解决方案是使用一种即使充电电流很高时也几乎不发热的充
电器。这要求使用脉冲充电器,它是一种完全不同于线性充电器的技术。脉冲充电器依靠
经过良好调节且电流受限的墙上适配器来充电。
方案一
:
LTC4059A
线性电池充电器
LTC4059A
是一款用于单节锂离子电池的线性充电器,它无需使用三个分立功率器件,可快
速充电而不用担心系统过热。监视器负责报告充电电流值,并指示充电器是何时与输入电
源连接的。它采用尽可能小的封装但没有牺牲散热性能。整个方案仅需两个分立器件(
输入
电容器和一个充电电流编程电阻
)
,占位面积为
2.5mm
×
2.7mm
。
LTC4059A
采用
2mm
×
2mm
DFN
封装,占位面积只有
SOT-23
封装的一半,并能提供大约
60
℃
/W
的低热阻,以提高散
热效率。通过适当的
PCB
布局及散热设计,
LTC4059A
可以在输入电压为
5V
的情况下以最
高
900mA
的电流对单节锂离子电池安全充电。此外,设计时无需考虑最坏情况下的功耗,
因为
LTC4059A
采用了专利的热管理技术,可以在高功率条件
(
如环境温度过高
)
下自动减小
充电电流。
方案二
:带过流保护功能的
LTC4052
脉冲充电器
B. 高频开关电源新技术应用的图书目录
前言
第一章 大型应急照明电源EPS、直流不间断电源电力柜替代传统交流UPS或柴油发电机
第一节 突然断电的不可预知性与严重危害
第二节 我国将面临长期缺电、能源紧张的严峻形势
第三节 用柴油发电机做应急电源将带来5个公害隐患
第四节 EPS应急电源简介
第五节 传统交流UPS的几大缺陷
第六节 LIPS的改革方案和工作原理
第二章 30000W应急照明电力柜直流输出DC220V高频开关电源联合
多个蓄电池组设计方案
第一节 简化的EPS电力柜设计框图及说明
第二节 铅酸蓄电池组的充电、正常运行、断电、复电过程
第三节 蓄电池的基本充放电特性
第四节 密封免维护蓄电池的外特性
第三章 韩国友联UNION优质大型蓄电池:阀控式密封铅酸
蓄电池MX00000系列和胶体蓄电池。IMX00000系列
第一节 引言
第二节 MX00000系列阀控式密封铅酸蓄电池详解
第三节 三种蓄电池系列规格
第四节 UNION阀控式密封铅酸蓄电池特性曲线
第五节 充电方法注意事项
第六节 友联胶体蓄电池JMX00000系列产品介绍
第四章 10000W高档开关电源剖析(直流输出DC 48V、200A)
第一节 10000W电源整机性能概述
第二节 10000W高档电源的三相输入端多级共模滤波器电路实体剖析
第三节 10000W朗讯UJCENT电源PFC控制板芯片
第四节 10000W全桥变换器主电路实体调查
第五节 10000W电源PFC控制板主芯片功能概况
第六节 全桥变换控制器UC3875设计特性、内部功能、电气参数、芯片各引脚安排
第五章 7000W高档开关电源剖析(直流输出350V、19A)
第一节 电源整机性能与结构概况
第二节 7000W电源数字信号监控板多只芯片的型号和引脚
第三节 7000w电源PFC功率因数校正板8只IC
第四节 7000W电源全桥变换器控制板布局与芯片规格
第五节 实测全桥变换器驱动脉冲波形
第六节 UCC3895功能框图、设计特点和电气参数
第七节 UCC3895全桥变换器移相控制芯片典型应用电路
第八节 新颖的ZCZVS PWM Boost全桥变换器
第六章 精确测量打印出电源电网输入电流波形,真实反映功率因数
校正结果的三合一简捷方法
第一节 数字功率计PF9811智能电量测量仪简介
第二节 测量打印350V/10A电源在4种负载时的电流波形、频谱特性和谐波
第三节 测量打印48V/70A电源4种不同负载时的输入电流波形、频谱特性和谐波
第七章 输出大功率的连续导通型PFC控制器UCC28019
第一节 功能设计、引脚安排、内电路框图
第二节 UCCC28019各单元电路工作原理
第三节 单元电路补充设计
第四节 设计PCB注意和应用电路、IC电气特性参数表
第五节 设计与计算过程步骤
第六节 环路补偿之一:电流环传递函数
第七节 电压环传递函数计算
第八节 布朗输出保护
第八章 最新大功率电源两相交互式PFC控制器UCC28070明显降低EMI和纹波电流
第一节 创新设计特点、简化外电路、内电路框图和各脚功能
第二节 UCC28070的工作原理
第三节 UCC28070的多相工作
第四节 IC可调节 峰值电流限制
第五节 IC增强的瞬态响应
第六节 IC先进的设计技术
第七节 采用UCC28070设计的1000W样板电路
第八节 UCC28070实用设计程序
第九章 对称式ZVS全桥变换器兼同步整流控制器ISL752
第一节 主要特性、内电路方框图与各引脚说明
第二节 各单元电路设计
第三节 由ISL6752组成的高压输入、原边控制的全桥电路
第四节 ZVS的全桥工作模式原理分析
第五节 同步整流的控制
第十章 同步整流控制器NCP4302大幅提高反激式开关电源效率
第一节 IC设计特点、引脚功能、内电路及应用
第二节 IC各单元电路工作原理
第十一章 LLC谐振半桥变换控制器NCPl396可高压直接驱动MOSFEI
第一节 IC设计特性、引脚安排、内电路方框图
第二节 IC新技术详解
第三节 压控振荡器与最大、最小开关频率调节
第四节 布朗输出保护
第五节 快速、慢速故障保护电路
第六节 起动中的状态及性能
第七节 高电压驱动
第十二章 双路交互式有源钳位PWM控制器LM5034用于正激开关电源
第一节 双路交互式控制的概念,IC各引脚内容
第二节 LM5034的工作原理
第三节 PWM控制器
第四节 输出驱动信号
第五节 软起动及交互式控制
第六节 两种不同输出电压电路结构概况
第七节 其他单元电路简介
第八节 PCB布局和实际应用电路
第十三章 全桥变换器移相控制软开关电源一个完整工作周期的12个过程分析(正、负半周不对称)
第一节 论文产生的背景说明
第二节 软开关移相控制全桥变换器的工作原理波形图,有独特详细
展宽的原边与副边电流、电压波形相位关系图
第三节 一个完整开关周期中正半周的6个工作过程详细分析
第四节 一个完整开关周期中负半周的6个工作过程详细分析
第五节 试制移相控制全桥变换器软开关稳压电源的体会
第十四章 两种3500W高档开关电源实体解剖、全面测量:直流输出48V/70A和350V/10A
第一节 实体解剖两种3500w高档开关电源:印制板铜箔、焊点走线图
第二节 用PF9811智能电量测量仪、配合联想电脑实测打印出多台3500W电源各项数据
第三节 测量记录两种3500W电源单机在多种负载时的数据
第四节 奇特的高密度、高功率因数控制板,8只IC、上百个贴片元件组合使PF≥0.9995
第五节 两种3500W电源不同的全桥变换器控制板贴片元器件拆解及等效电路初拟
第十五章 实体解剖两种6000W高档开关电源(直流输出48V/112A和350V/17A)
第一节 两种6000W电源的改进概况,拆解350V/17A电源主板绘图、全桥控制板新图
第二节 基本相同的:PFC控制板电路设计,在6000W电源改进了贴片元件的双夹层,铜箔走线设计有较大变化
第三节 两种6000W电源6只M()SFET紧固螺孔专用功率开关管转接电路印制板图
第四节 350V/17A电源主板上新增加CP[J数字信号处理监控板
第五节 开关电源全桥变换器控制电路框图,±15V稳压电源、PFC控制板
第六节 自制成功多块分立元器件PFC控制板:完成单面接线试验,实现低成本、高性能、国产化的技术价值(调正掌握关键
电路参数,与贴片阻容值有差异)
第七节 350V电源的副边整流有源钳位电路
第八节 6000W电源用SOT一227封装四螺孔连线M()SFET:FA57SA50LC
第九节 三相电网输入整流桥模块:VVY40(两端受控)
第十六章 新一代有源钳位PWM控制器UCC2891用于正激开关电源
第一节 设计特点、简化电路、内部功能方框
第二节 IC各引脚内容安排
第三节 有源钳位的工作原理
第四节 单元电路简介
第十七章 优秀的准谐振反激变换控制器NCPl337
第十八章 智能同步整流控制IC-IR1166/7A-B适用于多种变换器
第十九章 具有软式周期跳跃及频率抖动的PWM控制器——NCP1271
第二十章 准谐振单端变换器NCP1207及NCP1200系列芯片
第二十一章 铁硅铝磁粉心(Fe-Si-Al)应用在功率因数校正电路上的突出优点
第二十二章 香港公司MAGNETICS磁性材料钼坡莫合金、高磁通粉心、铁硅铝等介绍
第二十三章 平面磁集成技术的高功率密度在开关电源中的应用特点
第二十四章 单级功率因数校正控制器NCP1651
第二十五章 LTC3722同步双模式移相全桥控制器:提供自适应ZVS延迟导通,显著减少占空比丢失
第二十六章 TNY-Ⅲ新一代集成开关电源芯片用于中、小功率反激开关电源
第二十七章 实验制作20W、40W反激式开关电源,主变压器绕制工艺,实测多组高压脉冲波形
第二十八章 制作两种1000W全桥软开关电源的试验数据、实测波形、主变压器绕制方法
第二十九章 实验制作2000W全桥软开电源:重视监测原边电流波形,来选择输出电感器参数
第三十章 LTC3900同步整流控制器用于正激开关电源输出低压大电流
第三十一章 设计制作双管正激变换器高可靠200-300W开关电源实验
第三十二章 设计制作半桥变换器500W开关电源实验
第三十三章 CM6805、CM6903/4复合PFC/PWM特性;具有“ICST”输入电流整形技术的前沿调制PFC控制电路
第三十四章 用CM6800/01/02制作300-800W高功率因数开关
C. IC :LTC4411有什么作用
LTC4411, 凌特公司(Linear Technology)推出的低损耗 Power Path控制器, 采用 ThinSOT™ 封装的 2.6A 低损耗理想二极管。
特点:
PowerPath™“或”二极管的低损耗替代方案
小的已调节正向电压 (28mV)
2.6A 最大正向电流
低正向接通电阻 (最大值为 140mΩ)
低反向漏电流 (<1µA)
2.6V 至 5.5V 工作电压范围
内部电流限值保护
内部热保护
无需外部有源组件
LTC4412 的引脚兼容型单片替代器件
低静态电流 (40µA)
扁平 (1mm) 的 5 引脚 SOT-23 封装。
典型应用:
蜂窝电话
手持式计算器
数码相机
USB 外设
不间断电源
逻辑控制型电源开关。
D. 充电电路原理图解释
上图为充电器原理图,下面介绍工作原理。
1.恒流、限压、充电电路。该部分由02、R6、R8、ZD2、R9、R10和R13等元件组成。当接通市电叫,开关变压器T1次级感应出交流电压。经D4、C4整流滤波后提供约12.5V直流电压。一路通过R6、R1l、R14、LED3(FuL饱和指示灯)和R15形成回路,LED3点亮,表示待充状态:另一路电压通过R8限流,ZD2(5V1)稳压,再由并联的R9、R10和R13分压为Q2b极提供偏置,使Q2处于导通预充状态。恒流源机构由Q2与其基极分压电阻和ZD2等元件组成。当装入被充电池时12.5V电压即通过R6限流,经Q2的c—e极对电池恒流充电。这时由于Ul(Ul为软封装IC型号不详)与R6并联。R6两端的电压降使其①脚电位高于③脚,②脚就输出每秒约两个负脉冲。
使LED2(CH充电指示灯)频频闪烁点亮,表示正在正常充电。随着被充电池端电压的逐渐升高,即Q2 e极电位升高,升至设定的限压值(4.25V)时,由于Q2的b极电位不变,使Q2转入截止,充电结束。这时Q2c极悬空,Ul的③脚呈高电位,U1的②脚输出高电平,LED2熄灭。这时电流就通过R6、R11、R14限流对电池涓流充电,并点亮LED3。LED3作待充、饱和、涓流充电三重指示。
2.极性识别电路。此部分由R12和LEDl(TEST红色极性指示灯)构成。保护电路由Q3和R7等元件构成。假设被充电池极性接反了。
LED1就正偏点亮,警告应切换开关K,才能正常充电。如果电池一旦接反,Q3的I)极经R7获得正偏置,Q3导通,Q2的b极电位被下拉短路而截止,阻断了电流输出(否则电池就会被反充而报废),从而保护了电池和充电器两者的安全。
E. TP4056跟LTC4056是同一个东西吗
一、概述
tp4056是一款完整的单节锂离子电池采用恒定电流/恒定电压线性充电器。其底部
带有散热片的sop8封装与较少的外部元件数目使得tp4056成为便携式应用的理想选
择。tp4056可以适合usb电源和适配器电源工作。
F. 凌力尔特的LTC2943电池电量电压测试芯片有用过的吗
用电压表测量,直接测充电器两与电池的两端,不能显示电池的电压,而是充电器的电压。必须拿下电池,测电池的两端,才能显示电池的电压。但是充电过程中,最好不要反复拿下电池,中断充电。所以没有好的解决办法。
G. bmu是什么控制单元
BMU是一个电池管理单元。1.一种BMU数字模拟电路BMU具有多种功能,包括电压监测、电流监测、温度监测、绝缘监测和继电器状态监测。锂电池组的电池监控、管理和平衡可以实时检测电池组中所有单体电池的电压、电池组的总电流、总电压、环境温度等参数;2.BMU主要由电池采样管茄帆塌理芯片ltc680组成。2.它由主处理器CPU、电池外围电源和充电电路、外围保护和滤波电路组成。Ltc6802可以检测多达12个系列的电池电压,并通过兼容的串行外设接口SPI实现颤圆Ltc6802与主机轿岩处理器之间的信息交换。3.BMU的主要功能是检测N系列锂电池的电压和温度,自动平衡电池电量,提供隔离的can通信接口,为BMS提供电压、温度、监控和报警信息。
H. 柴油发动机新技术论文
柴油发动机是燃烧柴油来获取能量释放的发动机。我为大家整理的柴油发动机新技术论文,希望你们喜欢。
柴油发动机新技术论文篇一
柴油发动机燃烧技术及汽车新能源
摘要:汽车无疑是21世纪发展最为迅速,对人类影响最大的机械。近几十年来,面对地球能源的日益短缺和环境保护的严重形势,人们对车用发动机的燃油经济性更加重视,节能减排受到广泛关注。本文针对近年来柴油发动机燃烧技术以及其他汽车替代燃料的新能源开发应用进行了介绍和评论。最后对柴油发动机燃烧新技术的今后发展进行了展望,指出了汽车科技在21世纪的发展方向,即改善燃烧技术并且研发应用新能源。
关键词:柴油发动机 燃烧技术 燃料 新能源
0 引言
随着机动车保有量的迅速增加,全球石油能源临近枯竭。同时,排放法规日益严格,要求大幅降低汽车尾气中NOx和PM等排放。因此,燃油的经济性、节能减排受到广泛关注。改善燃烧技术,研发汽车新能源渐渐成为一项重要的课题。
汽车的动力来源于发动机气缸内燃料燃烧所放出的热能。传统的汽车发动机根据所用燃料种类区分,可分为柴油发动机和汽油发动机。近年来,由于世界能源短缺和环保低碳的要求,人们开始开发新型清洁燃料,如甲醇、乙醇、液化石油气(LPG)、压缩天然气(CNG)等。现在又大力开发混合动力汽车、电池电动汽车、电容电动汽车和太阳能汽车等。
1 柴油发动机燃烧技术
柴油机汽车因压缩比高,燃油消耗平均比汽油机汽车低30%左右,所以燃油经济性较好、热效率较高。但是传统的柴油机燃烧过程,是采用高压喷射将燃油喷入气缸,形成混合气,并借缸空气的高温自行发火燃烧。如果燃烧不充分,极易产生NOx 、PM。随着排放标准的提高,政府对节约能源与减少排放日益重视。为达到排放法规和降低油耗的要求,应该加强新的燃烧方式的探索,开发出高性能低成本的先进柴油机。近些年应运而生的先进的燃烧技术有:均质充量压缩点燃(HCCI)和低温燃烧(LTC)等。他们与传统的燃烧模式相比有很多自身的优势,有足够的提高效率和降低排放的潜力,但还需要进一步的深入讨论和完善。
1.1 均质充量压缩着火(HCCI)燃烧
自20世纪70年代末,均质充量压缩着火(HCCI)燃烧这一新概念被报道,国际上学术界和工业界一直高度重视这一燃烧技术,是世界内燃机燃烧研究领域中的热点之一。
均质充量压缩着火燃烧,就是柴油机在着火前像汽油机那样形成均质混合气,消除扩散燃烧,采用较高压缩比,压缩可控着火,实现近似等压燃烧;同时要具有良好的化学反应动力学效应,实现低温火焰快速燃烧,燃烧持续期短,燃烧效率高,可以同时保持较高的动力性和燃油经济性,达到高效、低污染的目标。与传统的点燃式发动机相比,它取消了节气门,泵气损失小,混合气多点同时着火,燃烧持续期短,可以得到与压燃式发动机相当的较高的热效率;与传统柴油机相比,由于混合气是均质的,有效的解决了传统均质稀混合气燃烧速度慢的缺点,燃烧反应几乎是同步进行,没有火焰前锋面,燃烧火焰温度低,可以同时降低NOx 和PM排放。另外,实施HCCI燃烧模式可以简化发动机燃烧系统和喷油系统的设计。因为HCCI燃烧的着火和燃烧速率只受燃料氧化反应的化学反应动力学控制,受缸内流场影响较小,同时均质预混的混合气组织也比较简单。HCCI的优点还包括它的燃料灵活性高,它能使用包括汽油、柴油、天然气、液化石油气(LPG)、甲醇、乙醇、二甲醚以及混合燃料等多种燃料。
HCCI这一燃烧方式具有重要的理论意义和广阔的应用前景。目前已在化学反应动力学机理、燃烧控制、负荷拓展等多个方面有了很大的进步。不过,业内多数研究机构认为该技术成熟至少应在2015年后,要想实用化在还技术上还存在很多弊端。这些弊端主要包括:均质混合气的制备;CO和HC排放的降低;低负荷下的燃烧不稳定和失火;高负荷下的燃烧粗暴;着火相位和燃烧速率的控制等。
1.2 低温扩散燃烧
对于柴油机来说,燃烧技术的关键是同时降低微粒和 NOx 排放,基本思想是加速燃油与空气混合,尽量燃烧“均匀”混合气,同时还需要降低燃烧温度,实现“低温”燃烧。柴油机低温燃烧,就是控制缸内燃烧温度低于NOx和碳烟的生成温度,从而有效降低NOx和碳烟排放。均质充量压缩着火(HCCI)燃烧属于低温燃烧,另一种低温燃烧技术是低温扩散燃烧。
与均质充量压缩着火(HCCI)燃烧不同,低温扩散燃烧的着火仍是由燃油喷射来控制。着火时,缸内存在燃空当量比大于1的区域,因此也就存在扩散火焰,燃烧速率受控于燃油空气混合速率,其较低的燃烧温度是通过采用相当大的冷却EGR率、低压缩比以及推迟喷射定时等措施来实现的。
1.3 富氧燃烧技术
发动机气缸内燃料的燃烧是靠空气中的氧气来助燃的, 因此改善发动机燃烧技术可以从进入发动机气缸助燃的空气入手。发动机富氧燃烧就是用比通常空气(含氧21%)含氧浓度高的富氧空气为发动机进气的燃烧。富氧燃烧可增加发动机的功率密度,提高柴油机的动力性和经济性,降低碳烟、CO和HC的排放,它是一项高效节能的燃烧技术。
早在 20世纪60年代末Karim等就已经开始了对柴油机富氧进气燃烧的研究[2]。我国于80年代中期开始富氧技术的研究。从20世纪90年代开始,通过研究人员的大量研究,富氧燃烧技术取得了一系列实质性进展。
由于富氧燃烧提高了柴油机的燃烧速率,优化了燃烧过程,提高了燃料能量释放率,所以使柴油机具有更好的动力性和经济性。富氧燃烧降低了碳烟、CO和HC的排放, 却增加了NO的排放。近年来研究人员提出了更为先进的燃烧技术――膜法富氧燃烧, 膜法富氧技术其基本原理主要是扩散和溶解,利用供应的气体分离膜两边的压力差以及各气体组分对于特定高分子膜的相对通过率不一样,而实现渗透和分离,获得某种高浓度气体[3]。
对于柴油发动机来说,膜法富氧不但可以提高发动机动力性能,最重要的是能够降低NOx和碳烟,达到降低排放的目的。膜法富氧技术被称为“资源的创造性技术”。 1.4 当量比燃烧
最近几年,为了适应更加苛刻的环保法规,柴油机产品上都使用了尾气后处理器,使柴油机的成本增加,也降低了可靠性。为降低后处理成本,Reitz等人[4]-[6]开展了柴油机当量比燃烧的研究,以便使用三元催化器。在一台单缸机上进行了试验。研究发现,在一定条件下,柴油机当量比燃烧可以实现极低的NOx和碳烟排放,二者都在0.2g/(kWh)以下。柴油机当量比燃烧研究的开展是最近几年才开始的,已经显示出很好的低NOX和PM排放性能。如果能够改善经济性,当量比燃烧在柴油机上的应用奖充满期望。
2 汽车新能源
随着汽车工业的不断发展,柴油、汽油等燃料的需求也越来越大,导致的最直接的后果就是石油日益枯竭,柴油、汽油等价格上涨。同时汽车尾气污染也日趋严重,在不可再生能源的日益枯竭和价格的不断上涨以及环保要求的双重压力下,寻找新能源将是今后汽车行业的主要任务。
2.1 燃气汽车
燃气汽车主要有液化石油气汽车和压缩天然气汽车。燃气汽车由于其排放性能好,运行成本低、技术成熟、安全可靠,被世界各国公认为当前最理想的替代品。天然气作为一种储量丰富干净可靠的清洁燃料,兼备汽油柴油的优点,具有抗爆性好、自燃温度高、排放特性好等特点,非常适合作为内燃机的代用燃料使用。与柴油相比,颗粒物和NOx排放非常少,而与汽油相比,HC、NOx和CO2排放较少。因此,加强对燃气汽车的研究,对缓解石油能源危机,改善环境具有重要意义,对于保障国民经济的持续发展也具有重大的战略意义。
2.2 电动汽车
电动汽车是指以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。电动汽车最大的优点是只要有电力供应的地方都能够充电。但是蓄电池单位重量储存的能量太少,还因电动车的电池较贵,又没形成经济规模,故购买价格较贵。目前电动汽车上应用最广泛的电源是铅酸蓄电池,但随着电动汽车技术的发展,铅酸蓄电池由于比能量较低,充电速度较慢,寿命较短,逐渐被其他蓄电池所取代。正在发展的电源主要有镍镉电池、钠硫电池、燃料电池、锂电池、飞轮电池等,这些新型电源的应用对环境影响相对传统汽车较小,其前景被广泛看好,但当前技术尚不成熟。
2.3 混合动力汽车
混合动力是指在原有的汽油发动机和柴油发动机基础上,同时配以电动机来改善低速动力输出和燃油消耗的车型。混合动力主要以发动机驱动行驶,利用电动马达所具有的再启动时产生强大动力的特征,在汽车起步、加速等发动机燃油消耗较大时,用电动马达辅助驱动的方式来降低发动机的油耗。混合动力汽车最大的优点就是“零”排放,而且采用混合动力后可按平均需用的功率来确定内燃机的最大功率。
2.4 甲醇HCCI燃烧
均质压燃的燃烧方式本身具有热效率高、NOx 排放低和几乎零PM排放的优点。甲醇来源广泛,着火界限宽,其气化速度快和易于形成混合气的特点,能更好地适应HCCI稀薄燃烧及分布式多点着火的工作方式。具有较高的抗爆性能,可以提高发动机的压缩比和热效率。将HCCI燃烧技术运用到甲醇车用发机上可满足节能减排的要求,但是目前还未能满足实际运用的要求,如对甲醇发动机HCCI燃烧过程的进行控制、拓展其负荷范围的方法等。
由此可见,汽车科技在21世纪的发展方向就是改善燃烧技术并且研发应用新能源。在大力改善燃烧技术的同时,积极降低替代燃料的生产成本、使用价格,使新能源发展为汽车产业的可持续发展带来光明的前景。
参考文献:
[1]Karim G A.Ward G.The examination of the cnmhustion processes in a compression-ignition engine by changing the partial pressure of oxygen in the intake charge[C].SAE Paper 680767.
[2]李胜琴,关强,张文会等.汽油发动机富氧燃烧分析[J].内燃机,2007(1):51-52.
[3]SangsukLee,ManuelA.GonzalezD.andRolfD.Re-itz.Stoichi--wayexhaustcatalyst[C].SAE Paper 2006-01-1148.
[4]Lee,S.,GonzalezD.,M.A.,Reitz,R.D.characteristics[C].SAE Paper 2007-01-0121.
[5]Chase,S.,Nevin,R.,Winsor,R.,Baumgard,K.,(SCI)Engine[C].SAE Paper2007-01-4224.
[6]黄喜鸣.浅谈汽油机稀燃层燃技术[J].装备制造技术,2006(4):174-175.
柴油发动机新技术论文篇二
现代柴油发动机节能减排新技术
摘要:文章主要对传统柴油发动机与汽油发动机的优缺点、现状及存在的问题进行了分析和阐述,从高压电控共轨技术、冷却式EGR技术等几方面介绍了现代柴油机为了更好地适应社会发展所采用的一系列节能减排的新技术,以提高柴油机的综合性能。
关键词:柴油机;节能减排;冷却式EGR技术;高压电控共轨技术
中图分类号:U464 文献标识码:A 文章编号:1009-2374(2012)20-0135-03
近几年来,随着发达国家柴油轿车在全部轿车中所占份额的不断增加,电控汽车柴油机开始异军突起,技术也有所突破,特别是出现了改变传统燃油喷射系统的组成和结构特征的高压共轨系统,并且为了符合国际的排放标准及节能标准出现了各种各样
的节能减排技术,使得柴油机的发展越来越好。
1柴油发动机的优缺点
1.1 柴油机的优点
柴油机与汽油机相比,主要有三大优点:
(1)扭矩大。相同排量下,柴油机力气更大,扭矩更大。
(2)省油。首先柴油的能量密度含量比汽油高;其次柴油机的热效率高。一般柴油机的油耗要比汽油机的低30%~40%。
(3)环保。由于柴油机的富氧燃烧,所以柴油机的CO、HC和CO2排量相对于汽油机较低。
1.2 柴油机存在的问题
柴油机的性能虽然在很多方面比汽油机更有优势,但是也存在着很多关键性的问题需要解决。
(1)尾气排放问题。虽然较汽油机来说,柴油机的CO、HC和CO2排量较低,但是颗粒和NOX的排放比较难控制。
(2)油耗问题。虽然柴油机的油耗要比汽油机的低,但是为了实现社会发展的需要,进一步降低油耗也成为柴油发动机所要克服的问题之一。
(3)升功率问题。柴油发动机本身的质量和体积也影响了其各方面的性能,所以为了使得柴油机进一步得到社会的认可,如何提高柴油发动机的升功率也成为了柴油机发展过程中的问题。
(4)比质量问题。柴油机由于采用压燃的方式,所以其材料要求较高,且其压缩比较大,也使得
柴油机相对于汽油机在同等排量的情况下其质量较大。
2现代柴油机新技术
2.1高压电控共轨技术
高压电控共轨式燃油喷射系统的出现,基本上改变了传统柴油机燃油喷射系统的组成和结构特征。高压电控共轨系统的最大特征就是燃油压力的形成和燃油量的计量在时间上、在系统中的部位和功能方面都是分开的。燃油压力的形成和燃油量的输送基本上与喷油过程无关。根据电控单元的指令控制每个喷油器,使得每个喷油器可按所要求的精确的喷油正式从共轨中“调出”具有所要求的精确压力和精确循环的燃油。改善了燃烧过程,提高了燃烧效率,降低了燃烧噪声和排放。该项技术已普遍在柴油车上使用。
2.2 冷却式EGR技术
采用冷却式EGR系统,在EGR气体流动管上安装冷却装置,当EGR气体进入进气管前先降低其温度,故燃烧温度比一般的EGR系统明显降低,且因进气密度高,进入燃烧室的气体量多,使得燃烧更完全,故也可减少PM的排放。
2.3均质燃烧技术(HCCI)
在均质燃烧方式下,柴油和空气在燃烧开始前已充分混合,形成均质预混合气。混合气被活塞压缩并发生自燃,并呈分布均匀、稀混合的低温、快速燃烧,从根本上消除了产生NOx的局部高温区和产生PM的过浓混合区,从而能大大降低NOx和PM的排放。
2.4NOx排放控制技术
(1)AR(吸附还原催化剂)。在稀燃阶段将NOx吸附储存起来,而在短暂的富燃阶段,NOx释放并被排气中的HC还原。
(2)SCR催化转化器。它是一种剂量系统,系统将还原剂(尿素)导入排气中,混合后再经过催化,可减少NOx的排放。
(3)NSCR。它是在去氮催化器中,用碳氢化合物作还原剂,将废气中的NO3还原。
(4)采用碳素纤维加载低电压技术。碳素纤维具有催化活性,能促进废气中的NO与C或HC进行氧化还原反应,随着电压的升高,可使NOx排放明显降低。
2.5颗粒排放控制技术
(1)颗粒捕捉器。颗粒(PM)是柴油机尾气主要成分之一,对人体的危害也非常大。颗粒捕捉器能够将尾气中的颗粒物过滤掉,可以达到90%以上的净化效果。
(2)氧化催化器。氧化催化器是利用催化器中的催化剂来降低废气中的HC、CO和颗粒中的可溶有机成分的活化性能,使这些成分能与废气中的O2在较低的温度下发生反应,从而降低柴油机的有害物质排放量。
2.6多气门技术
多气门发动机是指每一个气缸的气门数目超过两个,即两个进气门和一个排气门的三气门式;两个进气门和两个排气门的四气门式;三个进气门和两个排气门的五气门式。气门布置在气缸燃烧室中心两侧倾斜的位置上,是为了尽量扩大气门头的直径,加大气流通过面积,改善换气性能,形成一个火花塞位于中心的紧凑型燃烧室,有利于混合气的迅速燃烧,提高柴油机的经济性。
2.7增压中冷技术
增压就是增加进入柴油机汽缸内的空气密度,中冷则是将压缩后的空气的温度降低。最终是提高进入气缸内的空气量,能够在不改变发动机排量的基础上提高柴油机输出功率,降低其升功率。
2.8轻质量设计技术
在柴油机设计上,由于轻质量技术的应用以及材料和制造水平的提高,使得柴油机的比质量也有所下降,由汽油机派生出来的柴油机总质量约为汽油机的110%。
3柴油机技术发展趋势
从当今世界各主要汽车与发动机公司开发的新一代柴油机的技术变化看来,尽管柴油机各有特点,但大体上反映了以下发展趋势:
3.1优化结构设计
优化结构设计,减少摩擦与附件功率损失,提高机械效率。柴油机的有效效率等于指示效率与机械效率的乘积,因此,柴油机的燃油消耗率也直接受到机械效率的影响,国外在致力于完善缸内工作过程的同时,也十分重视减少摩擦损失和提高机械效率的研究。此外,以德国MTU公司为代表的可变排量技术也是一种有效手段。
3.2发展各种代用燃料
代用燃料大多是二次能源,常用的有植物油、天然气、醇类燃料、氢和燃料电池等。各种代用燃料一般都有降低环境污染的效果,并且都有较为可靠的来源。
3.3降污的柴油添加剂
研究节能降污的柴油添加剂,改善燃料的燃烧性能,对已投入使用的车辆来说,是较佳的技术处理方法之一。
4结语
先进柴油机技术的应用使柴油机的综合性能有了极大的提高,因此柴油机在市场上的占有量正逐步提高。特别是在欧洲,柴油轿车的销售量已占轿车总销量的1/3以上,并且这一数字仍在不断增长。在我国,先进技术的柴油机汽车将得到广泛的采用。
参考文献
[1]何林华.车用柴油发动机的发展趋势[J].客车技术与研究, 2004,(3).
[2]李棠, 李理光.柴油机HCCI燃烧的均质混合气制备
[J].汽车技术,2004,(5).
[3]周玉明. 减少柴油机NOx排放的机外措施[J].柴油机,2001,(1).
[4]邓元望,朱梅林,向东.柴油机微粒排放控制方法评述
[J].柴油机,2001,(5).
[5]廖梓珺, 陈国需, 陈淑莲.柴油机排放控制技术的研究进展[J]. 拖拉机与农用运输车,2009,(5).
作者简介:王晓慧,女,浙江工贸职业技术学院助理讲师,硕士,研究方向:载运工具运用工程。
看了“柴油发动机新技术论文”的人还看:
1. 柴油机新技术论文
2. 柴油机共轨新技术论文
3. 电力机车新技术论文
4. 农业机械技术论文
5. 关于机械化的论文
I. 扣式电池参考尺寸BEL是什么意思方形电池参考尺寸LTC-3PN、LTC-5PN是什么意思
1912年锂金属电池最早由Gilbert N. Lewis提出并研究。20世纪70年代时,M. S. Whittingham提出并开始研究锂离子电池。由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。所以,锂电池长期没有得到应用。随着科学技术的发展,现在锂电池已经成为了主流
常见的可充电和不可充电电池有3.6V可充电锂离子按钮电池(LIR系列)和3V可充电锂离子按钮电池(ML或VL系列)。不可充电电池包括3V锂锰扣式电池(CR系列)和1.5V碱性锌锰扣式电池(LR系列和SR系列)。
纽扣电池的代码里通常有一个R,后面跟着一个数字。这些数字直接代表电池的直径和厚度,如CR3032锂按钮,即指的是直径30毫米,厚度32毫米,一些特殊的直径和厚度的代码,比如LR41指碱性电池,直径7.9毫米,厚3.6毫米,SR43,指的是氧化银电池,直径11.6毫米,厚4.2毫米。
下面是一些常见的纽扣电池:
LTC-3PN、LTC-5PN是美国Eaglepicher蓄电池(中国)有限公司生产的一种锂电池型号。
方形锂电池(Square lithium battery)是一款电池,锂离子电池按外形分为方形锂电池(如常用的手机电池电芯)、柱形锂电池(如18650、18500等)和扣式锂电池;锂电池按外包材料分为铝壳锂电池、钢壳锂电池、软包电池;按正极材料分为钴酸锂、磷酸铁锂、锰酸锂、锂聚合物。
新型电动自行车有采用锂电池的车型。IEC标准中二次锂电池的标识为:
圆柱形锂电池的标识由3个字母+5个数字组成。
J. 凌特LTC4020,不接电池空载时输出剧烈抖动,这个是什么问题
你测一下34pin跟36pin的电平,要是没有就是没焊好或者芯片坏了。
你是工作在BOOST还是BUCK,关注一下相应驱动脚的波形。