本地跑eth节点
① 搭建geth私有链和联盟链网络
操作系统:linux或Mac OS
安装geth执行以下命令:
linux:sudo apt-get install ethereum
Mac OS:brew install ethereum
直接创建两个geth的工作目录,用于之后的组建联盟链的使用:
mkdir eth-private1
mkdir eth-private2
首先 cd eth-private1 进入节点1的工作目录该目录下执行下面命令
geth --datadir data --nodiscover console (data是之后geth节点的数据目录,可自行修改)
使用geth自带的工具 puppeth 用于生成创世区块,过程如下:
puppeth
+-----------------------------------------------------------+
| Welcome to puppeth, your Ethereum private network manager |
| |
| This tool lets you create a new Ethereum network down to |
| the genesis block, bootnodes, miners and ethstats servers |
| without the hassle that it would normally entail. |
| |
| Puppeth uses SSH to dial in to remote servers, and builds |
| its network components out of Docker containers using the |
| docker-compose toolset. |
+-----------------------------------------------------------+
Please specify a network name to administer (no spaces, please)
输入私链名称后,会出现二级菜单,现在2:配置一个新的创世快
What would you like to do? (default = stats)
再次出现二级菜单,让你选择共识机制(这里采用poa共识)
Which consensus engine to use? (default = clique)
Ethash - proof-of-work(PoW) :工作量证明,通过算力达成共识 (以太坊就是使用这种方式)
Clique - proof-of-authority(PoA): 权威证明、通过预先设定的权威节点来负责达成共识 (不消耗算力,一般用于私有链测试开发)
如果选择Pow的共识方法,直接输入1,回车即可。
如果选择PoA的共识方法,输入2后会提示让你选择处快的间隔时间,一般测试开发使用可以设置相对的将处快时间设置较少5秒即可,然后会让你选择哪个账户来作为权威生成区块(至少有一个,输入刚才创建的账户,若只是单节点就输入那个节点目录生成的地址,若想组建联盟链就填写生成的两个地址)
How many seconds should blocks take? (default = 15)
选择好共识机制后会让你指定给那些账号初始化ether(至少有一个),输入我们刚才创建的账户地址回车即可。
Which accounts should be pre-funded? (advisable at least one)
选择输入私有链的网络ID,任意数字即可(不能为1,1是公链),也可以不输入会给定一个随机数作为私有链的网络ID
Specify your chain/network ID if you want an explicit one (default = random)
选择导出创世区块配置文件
选择导出创世区块配置文件的保存路径,可以保存到当前目录,直接按回车即可
Which file to save the genesis into? (default = my-private-chain.json)
INFO [02-09|14:56:33] Exported existing genesis block
这样就完成了创世区块文件的配置了,直接退出puppeth即可。
输入命令 geth --datadir data init private.json 其中data自己制定,private.json就是刚才生成的创世区块
若出现如图错误:
输入命令:
geth --datadir data --syncmode full --port 2001 --networkid 1234 --rpc --rpcport "8545" --rpccorsdomain "*" --rpcaddr "0.0.0.0" --rpcapi "db,eth,net,web3,personal,admin,clique" --nodiscover console 进入控制台
--datadir data:节点的数据目录
--syncmode full:块同步的方式(若只是单节点可不填)
--port 2001: 网卡监听端口
--networkid 1234:网络标识符
--rpc:开启rpc服务
--rpcport "8545":rpc服务的端口
--rpccorsdomain "*":允许跨域请求的域名列表(逗号分隔)(浏览器强制)
--rpcaddr "0.0.0.0" :HTTP-RPC服务器接口地址(默认值:“localhost”)
--rpcapi "db,eth,net,web3,personal,admin,clique":基于HTTP-RPC接口提供的API(私有链可以任意开发,公有链需要谨慎)
--nodiscover:不允许节点自动加入
若想搭建联盟链,必须保证创世区块一致,进入到刚才创建的eth-private2的目录
将之前生成的创世区块拷贝过来,初始化创世区块,然后使用启动命令启动分别启动两个节点,进入控制台,使用 admin.nodeInfo 命令获取节点的信息
总结:
两个服务器部署两个节点是可以联通的,但是只能使用两个节点对应的地址进行挖矿,所以只能是两个节点对应两个地址进行挖矿,使用poa共识,当一个节点挂掉,挖矿停止,因为poa共识挖矿必须超过50%的节点进行钱增,现在只是两个节点,挂掉一个节点挖矿就会停止等待另一个节点的确认,停掉的节点可以通过正常运作的节点信息重新连接到网络中。
问题:
同步块有可能报错情况:
1:Synchronisation failed "retrieved hash chain is invalid" 解决目前找到的方法是removedb 数据目录 ,重新init创世区块
2:内存溢出初步确认为开启rpc服务造成的,有可能服务器恶意被黑,暴力破解密码,占有内存,解决,将服务器的ip设置一条防火墙
若存在问题可给本人留言或访问本人的github: https://github.com/qi-shuo/geth-document 记录了一些本人搭建使用的命令
② 我能自己来运行 Eth 2.0 的验证者吗
可以!
你在运行自己的验证者节点时,首先要意识到的是,你这样做是有助于网络安全性的,而且你无需过度担心正常运行时间。
假设网络总体上是健康的(始终有超过 2/3 的节点在线,并且一直在终局化新的区块),在线时间超过 50% 的验证者将看到自己的权益会不断增加。
引用以太坊基金会的 ETH Staking 指南系列文章中的一句话:
这就减轻了验证者在客户端备份和网络延迟上的负担,因为离线的惩罚并不那么严重。
自己运行验证者节点并不像你想象中那么可怕或昂贵。一旦ETH 2.0上线,你就可以在一个旧手机或树莓派(100 美元)上运行验证者节点。
我们专门为开发者撰写了关于如何使用 Nimbus 在安卓系统上运行验证者节点的指南(分别是这篇和这篇)。在主网上线前,我们一直在尽可能简化这一流程。尤其值得一提的是,主网指南将面向那些没有编程经历的用户,而且会尽可能实现 “安装 + 质押 ETH = 正常运行”。
你可以帮助以太坊增强抗攻击性与其让同一个实体控制 100 个节点,不如让一个实体控制一个节点。——Barnabe Monnot
从长远角度来看,以太坊的价值越高,抗攻击性越强,其共识层的去中心化程度就越高。
中本聪最初的愿景是 “一 CPU 一票制”,但是如今的 PoW 系统已经偏离了这一愿景。就目前而言,绝大部分挖矿资源都集中在少数矿池手中。个体矿工都为了缩小自己收入的波动性而加入矿池。
我们之所以选择从 PoW 模式转向 PoS 模式,也是为了解决这一问题。
如果有越来越多人选择自己运行验证者节点,我们就可以将这一愿景变为现实,增强以太坊的抗攻击性,使之在无需审查的情况下不断发展。
③ 如何看待以太坊的ETH2.0
我个人非常看好以太坊2.0之后的发展,但我并不是特别看好以太坊之后的价格。
当以太坊升级到2.0以后,以太坊的证明模式将会发生变化。在此之前,以太坊一直通过POW的方式来提供证明。但在此之后,以太坊将会把证明模式调整为POS。当以太坊正式进入到2.0时代之后,以太坊的交易速度将会进一步提高,交易手续费也会大幅压缩,都会显著解决当前以太坊的交易困境。从某种程度上来说,以太坊到时候将会成为真正意义上的第一公链。至于以太坊以后的价格问题,当以太坊失去矿工的支持之后,我觉得价格很难突破新高。
综上所述,在以太坊没有正式升级到2.0之前,一切讨论都只不过是猜测而已,你可以参考一下。
④ 011:Ethash算法|《ETH原理与智能合约开发》笔记
待字闺中开发了一门区块链方面的课程:《深入浅出ETH原理与智能合约开发》,马良老师讲授。此文集记录我的学习笔记。
课程共8节课。其中,前四课讲ETH原理,后四课讲智能合约。
第四课分为三部分:
这篇文章是第四课第一部分的学习笔记:Ethash算法。
这节课介绍的是以太坊非常核心的挖矿算法。
在介绍Ethash算法之前,先讲一些背景知识。其实区块链技术主要是解决一个共识的问题,而共识是一个层次很丰富的概念,这里把范畴缩小,只讨论区块链中的共识。
什么是共识?
在区块链中,共识是指哪个节点有记账权。网络中有多个节点,理论上都有记账权,首先面临的问题就是,到底谁来记帐。另一个问题,交易一定是有顺序的,即谁在前,前在后。这样可以解决双花问题。区块链中的共识机制就是解决这两个问题,谁记帐和交易的顺序。
什么是工作量证明算法
为了决定众多节点中谁来记帐,可以有多种方案。其中,工作量证明就让节点去算一个哈希值,满足难度目标值的胜出。这个过程只能通过枚举计算,谁算的快,谁获胜的概率大。收益跟节点的工作量有关,这就是工作量证明算法。
为什么要引入工作量证明算法?
Hash Cash 由Adam Back 在1997年发表,中本聪首次在比特币中应用来解决共识问题。
它最初用来解决垃圾邮件问题。
其主要设计思想是通过暴力搜索,找到一种Block头部组合(通过调整nonce)使得嵌套的SHA256单向散列值输出小于一个特定的值(Target)。
这个算法是计算密集型算法,一开始从CPU挖矿,转而为GPU,转而为FPGA,转而为ASIC,从而使得算力变得非常集中。
算力集中就会带来一个问题,若有一个矿池的算力达到51%,则它就会有作恶的风险。这是比特币等使用工作量证明算法的系统的弊端。而以太坊则吸取了这个教训,进行了一些改进,诞生了Ethash算法。
Ethash算法吸取了比特币的教训,专门设计了非常不利用计算的模型,它采用了I/O密集的模型,I/O慢,计算再快也没用。这样,对专用集成电路则不是那么有效。
该算法对GPU友好。一是考虑如果只支持CPU,担心易被木马攻击;二是现在的显存都很大。
轻型客户端的算法不适于挖矿,易于验证;快速启动
算法中,主要依赖于Keccake256 。
数据源除了传统的Block头部,还引入了随机数阵列DAG(有向非循环图)(Vitalik提出)
种子值很小。根据种子值生成缓存值,缓存层的初始值为16M,每个世代增加128K。
在缓存层之下是矿工使用的数据值,数据层的初始值是1G,每个世代增加8M。整个数据层的大小是128Bytes的素数倍。
框架主要分为两个部分,一是DAG的生成,二是用Hashimoto来计算最终的结果。
DAG分为三个层次,种子层,缓存层,数据层。三个层次是逐渐增大的。
种子层很小,依赖上个世代的种子层。
缓存层的第一个数据是根据种子层生成的,后面的根据前面的一个来生成,它是一个串行化的过程。其初始大小是16M,每个世代增加128K。每个元素64字节。
数据层就是要用到的数据,其初始大小1G,现在约2个G,每个元素128字节。数据层的元素依赖缓存层的256个元素。
整个流程是内存密集型。
首先是头部信息和随机数结合在一起,做一个Keccak运算,获得初始的单向散列值Mix[0],128字节。然后,通过另外一个函数,映射到DAG上,获取一个值,再与Mix[0]混合得到Mix[1],如此循环64次,得到Mix[64],128字节。
接下来经过后处理过程,得到 mix final 值,32字节。(这个值在前面两个小节《 009:GHOST协议 》、《 010:搭建测试网络 》都出现过)
再经过计算,得出结果。把它和目标值相比较,小于则挖矿成功。
难度值大,目标值小,就越难(前面需要的 0 越多)。
这个过程也是挖矿难,验证容易。
为防止矿机,mix function函数也有更新过。
难度公式见课件截图。
根据上一个区块的难度,来推算下一个。
从公式看出,难度由三部分组成,首先是上一区块的难度,然后是线性部分,最后是非线性部分。
非线性部分也叫难度炸弹,在过了一个特定的时间节点后,难度是指数上升。如此设计,其背后的目的是,在以太坊的项目周期中,在大都会版本后的下一个版本中,要转换共识,由POW变为POW、POS混合型的协议。基金会的意思可能是使得挖矿变得没意思。
难度曲线图显示,2017年10月,难度有一个大的下降,奖励也由5个变为3个。
本节主要介绍了Ethash算法,不足之处,请批评指正。
⑤ 1. 树莓派:eth桥接到wlan口,共享上网
背景: 树莓派外接5G无线网卡,推流器连接raspberry 3B lan口,共享上网。
验证: raspberry 3B连接手机的热点,PC通过网线与raspberry的lan口相连,实现上网。
思路:
1. 首先给raspberry的eth设置一个静态ip地址。
2. 修改IP转发规则,允许ip数据的转发。(ip_forward的设置)
3. 路由设置,配置iptables,进行两个网卡的桥接。
4. 开启raspberry的DHCP服务,在eth口上开启。
5. 开启DNS服务。
详细过程:
1. 给树莓派的eth分配静态地址。
暂时分配:
sudo ifconfig eth0 192.168.173.1 255.255.255.0 up
永久分配:
写在配置文件里。
配置文件 /etc/network/interfaces,请注意此处wlan0的地址参数要和etc/udhcpd.conf相关参数相对应。
sudo vi /etc/network/interfaces
#iface default inet dhcp
增加
auto eth0
iface eth0 inet static
address 192.168.173.1
netmask 255.255.255.0
注意:
2. 启动IP转发
有多种方法,建议使用sysctl的设置方式
方法1:sudo echo 1 > /proc/sys/net/ipv4/ip_forward
方法2:sudo sh -c "echo 1 > /proc/sys/net/ipv4/ip_forward"
方法3:sudo sysctl -w net.ipv4.ip_forward=1
有的时候需要在/etc/sysctl.conf下添加一行:net.ipv4.ip_forward=1
3. iptables设置
iptables -t nat -I POSTROUTING -o wlan0 -j MASQUERADE
4. dhcp服务
4.1 安装udhcpd服务
sudo apt-get update
sudo apt-get install udhcpd
4.2 配置DHCP服务
sudo vi /etc/udhcpd.conf
1. 修改网络接口,设置成对应的网卡号
2. 设置remaining,去除前面的#符号
#remaining yes 改为 remain yes
3. 设置树莓派的IP地址
修改opt router为192.168.173.1,那么配置完成之后这个地址将作为网关,连接到raspberry eth口的设备网关需要设置为此IP.
此处opt dns被修改为公共的DNS地址 114.114.114.114和 114.114.114.115
4.3 使能DHCP
配置 /etc/default/udhcpd
sudo nano /etc/default/udhcpd
使用#符号注释DHCPD_ENABLED="no"
DHCPD_ENABLED="no" 改为 #DHCPD_ENABLED="no"
4.4 启动服务
1. 启动udhcp的服务:sudo service udhcpd start
2. 设置开机启动: sudo update-rc.d udhcpd enable
5. dns服务
在进行调试的时候发现无法查询到raspberry使用的dns地址,按照常规方法查到的dns地址为127.0.1.1。在网上查了一下https://segmentfault.com/q/1010000002443769 感兴趣的可以参考一下这篇文章。
这就导致我在测试的时候遇到一个问题,pc可以通过ip地址访问,但是通过域名无法访问。然后我就在网上查了一些共用的dns服务器,设置后一切正常。关于这些共用的dns信息参考如下:
/********************************************************************************************************************************************************/
A、DNSPod DNS+:DNSPod的 Public DNS+是目前国内第一家支持ECS的公共DNS,是DNSPod推出的公共域名解析服务,可以为全网用户提供域名的公共递归解析服务!
DNS 服务器 IP 地址:
首选:119.29.29.29 备选:182.254.116.116
B、114DNS:国内用户量巨大的DNS,访问速度快,各省都有节点,同时满足电信、联通、移动各运营商用户,可以有效预防劫持。
DNS 服务器 IP 地址:
首选:114.114.114.114 备选:114.114.114.115
C、阿里 AliDNS:阿里公共DNS是阿里巴巴集团推出的DNS递归解析系统,目标是成为国内互联网基础设施的组成部分,面向互联网用户提供“快速”、“稳定”、“智能”的免费DNS递归解析服务。
DNS 服务器 IP 地址:
首选:223.5.5.5 备选:223.6.6.6
/********************************************************************************************************************************************************/
⑥ 以太坊伦敦升级!欧科云链链上大师上线EIP-1559专题数据把脉“生态波动”
8月5日,以太坊主网伦敦硬分叉升级,在区块链高度12,965,000正式激活,以太坊EIP-1559提案随之生效。
从2019年3月被提出,EIP-1559提案便引发以太坊社区内的巨大争议——反对者认为这项提案“治标不治本”、“伤害不大,侮辱性极强”,支持者则表示提案将“优化用户体验”、“降低以太坊通胀率”。随着伦敦硬分叉生效,EIP-1559提案正式写进了以太坊网络的DNA。
对于生态用户、矿工、DeFi、生态价值反哺,这项提案将会带来哪些影响和波动?8月5日,欧科云链链上大师正式上线EIP-1559专题数据。在这里,伦敦硬分叉前后带来的风向变动,你都能最早知道!
什么是EIP-1559提案?
2019年3月,以太坊创始人Vitalik Buterin和Ethhub创始人Eric Conner联合提出了EIP-1559提案,希望改变以太坊的交易手续费机制,使费用市场更加稳定,缓解以太坊网络的拥堵问题。
EIP-1559提案提出,在今后的费用市场,每笔交易用户需要支付固定基础费,如需加快交易确认可向矿工支付小费,小费归矿工所有,基础费全部销毁。 在链上大师EIP-1559专题页面,我们对提案细节、影响等做了详细分析。 在新的交易手续费机制下,以太坊生态迎来了一场“交易改革”。
EIP-1559专题有哪些数据?
基于以太坊全节点链上数据,欧科云链链上大师推出了EIP-1559专题数据,涵盖硬分叉倒计时、数据概览、矿工收入、交易手续费、小费分布统计等数据,展示了EIP-1559提案生效前后的数据波动,为用户判断以太坊生态的发展态势提供数据参考。
在EIP-1559专题页面,首先看到的是以太坊生态的数据概览。价格走势、最新块高、以太坊当前供应量、以太坊燃烧量等基础数据都汇总在这里。
数据概览下方,便是欧科云链链上大师针对此次升级所做的一系列数据指标。
EIP1559提案对矿工有哪些影响?
新的交易手续费机制给矿工带来了最直接的冲击,因此在EIP-1559提案的反对声音中,一股重要的群体就是矿工。
在矿工收入和交易手续费一栏,链上大师提供了1张折线图和2张柱状图,直观展示EIP-1599提案给矿工带来的影响。
折线图以EIP-1559提案生效时间为轴,展示了在这一大事件发生前后,矿工收入、交易手续费、ETH价格的变化趋势,并且提供ETH和USDT两种计价单位,直观展示EIP-1559协议对这3项数据的影响。
柱状图则分别展示了矿工收入和交易手续费的柱状图,前者展现了原模式下矿工收入和EIP-1559生效后的区块收入、手续费,后者则提供了原模式下总手续费和EIP-1559生效后的基础费、小费数据。
依据这部分数据,矿工和生态用户可以提前做出理性的判断和市场行为。
ETH会出现通缩吗?生态会不会变得更好?
关于EIP-1559提案,一部分人认为它能降低Gas费,并通过销毁一定数量的ETH,一定程度上抵消新发行的ETH、进而带来通缩效应。一部分人则认为从长远来看并不能降低 Gas费,通缩也难以实现。
为了验证这些判断,链上大师提供了3张图表,来展示ETH供应量和销毁量数据。
“ETH供应量”以折线图的形式,分别展示了预估供应量和实际流通量的区别与变化,可以验证EIP-1559提案对于以太坊通胀带来的影响。
“ETH销毁量”则以折线图+柱状图的形式,展示了ETH价格、gas利用率、basefee、交易数和ETH销毁量的变化和相关关系。利用这项数据,可以分析ETH销毁量与ETH价格、交易数等数据的相关性,客观分析EIP-1559提案的意义。
除了基础费之外,以后要给矿工打赏多少小费?
在EIP-1559提案生效后,小费成为ETH生态用户最经常用到的一个数据。
在“小费统计”栏,链上大师提供了3张数据图表,分别展示小费分布统计、小费交易数和具体数据表格呈现。
小费分布统计表以“折线图+箱线图”的形式,展示了最近1000个区块的小费平均数和小费数据;小费交易数,则以“堆叠柱状图(交易数量)+折线图(ETH价格)”的形式,展示最近1000个区块内,小费交易数量和ETH价格的动态关系;而数据表格呈现表,则给出了EIP-1559生效后近N日的平均数据。
伦敦硬分叉后,会引发矿工抵制吗?
EIP-1559提案生效后,支付给矿工的交易费用预计将会减少,这会不会导致矿工投降或反抗,进而影响以太坊生态的稳定性呢?
针对这点,链上大师推出了“链上数据”折线图,将ETH价格、全网算力、区块大小、单位算力收益等数据,并标注出伦敦硬分叉的时间轴,展示各个数据的关联性和在硬分叉前后的变动。
通过观察这张图表,可以直观得到此次硬分叉对以太坊生态的影响。
小结
随着以太坊伦敦硬分叉正式上线,以太坊网络迎来了一场夏风。生长在以太坊上的矿工、用户、DeFi协议等生态参与者,都将被吹动。
这场夏风是急是缓,是利是弊,是热是凉?在我们切身感受到它的冲击之前,欧科云链链上大师推出“EIP-1559专题”,提前洞悉链上数据,充当这场夏风的“测风仪”,不仅为生态参与者带来诸多便利,也进一步完善了以太坊生态的大数据基础设施,开拓了区块链大数据的发展空间和想象力。
本文源自金融界网