eth184最新出单
❶ ETH是什么币
ETH是数子货币以太坊,它与BTC比特币,EoS柚子币并称三大数子货币。可以形象地比喻,比特币是大哥大,可以打电话,以太坊是小灵通,可以打电话玩小游戏,EoS是智能机。
❷ 以太币ETH是什么
以太币(ETH)是以太坊(Ethereum)的一种数字代币,被视为“比特币2.0版”,采用与比特币不同的区块链技术“以太坊”(Ethereum),一个开源的有智能合约成果的民众区块链平台,由全球成千上万的计算机构成的共鸣网络。开发者们需要支付以太币(ETH)来支撑应用的运行。和其他数字货币一样,以太币可以在交易平台上进行买卖 。
温馨提示:以上解释仅供参考,不作任何建议。入市有风险,投资需谨慎。您在做任何投资之前,应确保自己完全明白该产品的投资性质和所涉及的风险,详细了解和谨慎评估产品后,再自身判断是否参与交易。
应答时间:2020-12-02,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html
❸ 1ETH等于多少人民币
1ETH等于多少人民币?来看数字货币行情回顾,4月27日以太币价格为658.33美元,市场规模为65221000000美元。比特币价格为1407美元,市场规模为24053054719美元。瑞波币价格为0.84672美元,市场规模为84671477733美元。比特币现金价格为1407美元,市场规模为24053054719美元。
4月27日数字货币行情回顾,仅供参考!
❹ ETH开发实践——批量发送交易
在使用同一个地址连续发送交易时,每笔交易往往不可能立即到账, 当前交易还未到账的情况下,下一笔交易无论是通过 eth.getTransactionCount() 获取nonce值来设置,还是由节点自动从区块中查询,都会获得和前一笔交易同样的nonce值,这时节点就会报错 Error: replacement transaction underpriced
在构建一笔新的交易时,在交易数据结构中会产生一个nonce值, nonce是当前区块链下,发送者(from地址)发出的交易(成功记录进区块的)总数, 再加上1。例如新构建一笔从A发往B的交易,A地址之前的交易次数为10,那么这笔交易中的nonce则会设置成11, 节点验证通过后则会放入交易池(txPool),并向其他节点广播,该笔交易等待矿工将其打包进新的区块。
那么,如果在先构建并发送了一笔从地址A发出的,nonce为11的交易,在该交易未打包进区块之前, 再次构建一笔从A发出的交易,并将它发送到节点,不管是先通过web3的eth.getTransactionCount(A)获取到的过往的交易数量,还是由节点自行填写nonce, 后面的这笔交易的nonce同样是11, 此时就出现了问题:
实际场景中,会有批量从一个地址发送交易的需求,首先这些操作可能也应该是并行的,我们不会等待一笔交易成功写入区块后再发起第二笔交易,那么此时有什么好的解决办法呢?先来看看geth节点中交易池对交易的处理流程
如之前所说,构建一笔交易时如果不手动设置nonce值,geth节点会默认计算发起地址此前最大nonce数(写入区块的才算数),然后将其加上1, 然后将这笔交易放入节点交易池中的pending队列,等到节点将其打包进区块。
构建交易时,nonce值是可以手动设置的,如果当前的nonce本应该设置成11, 但是我手动设置成了13, 在节点收到这笔交易时, 发现pending队列中并没有改地址下nonce为11及12的交易, 就会将这笔nonce为13的交易放入交易池的queued队列中。只有当前面的nonce补齐(nonce为11及12的交易被发现并放入pending队列)之后,才会将它放入pending队列中等待打包。
我们把pending队列中的交易视为可执行的,因为它们可能被矿工打包进最新的区块。 而queue队列因为前面的nonce存在缺失,暂时无法被矿工打包,称为不可执行交易。
那么实际开发中,批量从一个地址发送交易时,应该怎么办呢?
方案一:那么在批量从一个地址发送交易时, 可以持久化一个本地的nonce,构建交易时用本地的nonce去累加,逐一填充到后面的交易。(要注意本地的nonce可能会出现偏差,可能需要定期从区块中重新获取nonce,更新至本地)。这个方法也有一定的局限性,适合内部地址(即只有这个服务会使用该地址发送交易)。
说到这里还有个坑,许多人认为通过 eth.getTransactionCount(address, "pending") ,第二个参数为 pending , 就能获得包含本地交易池pending队列的nonce值,但是实际情况并不是这样, 这里的 pending 只包含待放入打包区块的交易, 假设已写入交易区块的数量为20, 又发送了nonce为21,22,23的交易, 通过上面方法取得nonce可能是21(前面的21,22,23均未放入待打包区块), 也可能是22(前面的21放入待打包区块了,但是22,23还未放入)。
方案二是每次构建交易时,从geth节点的pending队列取到最后一笔可执行交易的nonce, 在此基础上加1,再发送给节点。可以通过 txpool.content 或 txpool.inspect 来获得交易池列表,里面可以看到pending及queue的交易列表。
启动节点时,是可以设置交易池中的每个地址的pending队列的容量上限,queue队列的上容量上限, 以及整个交易池的pending队列和queue队列的容量上限。所以高并发的批量交易中,需要增加节点的交易池容量。
当然,除了扩大交易池,控制发送频率,更要设置合理的交易手续费,eth上交易写入区块的速度取决于手续费及eth网络的拥堵状况,发送每笔交易时,设置合理的矿工费用,避免大量的交易积压在交易池。
❺ 有可以交易以太币/以太坊ETH的手机APP吗
有,中国比特币CHBTC手机APP就可以交易以太币/以太坊ETH,很方便很好用。中国比特币CHBTC官网上面就可以下载。
❻ 【深度知识】以太坊数据序列化RLP编码/解码原理
RLP(Recursive Length Prefix),中文翻译过来叫递归长度前缀编码,它是以太坊序列化所采用的编码方式。RLP主要用于以太坊中数据的网络传输和持久化存储。
对象序列化方法有很多种,常见的像JSON编码,但是JSON有个明显的缺点:编码结果比较大。例如有如下的结构:
变量s序列化的结果是{"name":"icattlecoder","sex":"male"},字符串长度35,实际有效数据是icattlecoder 和male,共计16个字节,我们可以看到JSON的序列化时引入了太多的冗余信息。假设以太坊采用JSON来序列化,那么本来50GB的区块链可能现在就要100GB,当然实际没这么简单。
所以,以太坊需要设计一种结果更小的编码方法。
RLP编码的定义只处理两类数据:一类是字符串(例如字节数组),一类是列表。字符串指的是一串二进制数据,列表是一个嵌套递归的结构,里面可以包含字符串和列表,例如["cat",["puppy","cow"],"horse",[[]],"pig",[""],"sheep"]就是一个复杂的列表。其他类型的数据需要转成以上的两类,转换的规则不是RLP编码定义的,可以根据自己的规则转换,例如struct可以转成列表,int可以转成二进制(属于字符串一类),以太坊中整数都以大端形式存储。
从RLP编码的名字可以看出它的特点:一个是递归,被编码的数据是递归的结构,编码算法也是递归进行处理的;二是长度前缀,也就是RLP编码都带有一个前缀,这个前缀是跟被编码数据的长度相关的,从下面的编码规则中可以看出这一点。
对于值在[0, 127]之间的单个字节,其编码是其本身。
例1:a的编码是97。
如果byte数组长度l <= 55,编码的结果是数组本身,再加上128+l作为前缀。
例2:空字符串编码是128,即128 = 128 + 0。
例3:abc编码结果是131 97 98 99,其中131=128+len("abc"),97 98 99依次是a b c。
如果数组长度大于55, 编码结果第一个是183加数组长度的编码的长度,然后是数组长度的本身的编码,最后是byte数组的编码。
请把上面的规则多读几篇,特别是数组长度的编码的长度。
例4:编码下面这段字符串:
The length of this sentence is more than 55 bytes, I know it because I pre-designed it
这段字符串共86个字节,而86的编码只需要一个字节,那就是它自己,因此,编码的结果如下:
184 86 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
其中前三个字节的计算方式如下:
184 = 183 + 1,因为数组长度86编码后仅占用一个字节。
86即数组长度86
84是T的编码
例5:编码一个重复1024次"a"的字符串,其结果为:185 4 0 97 97 97 97 97 97 ...。
1024按 big endian编码为004 0,省略掉前面的零,长度为2,因此185 = 183 + 2。
规则1~3定义了byte数组的编码方案,下面介绍列表的编码规则。在此之前,我们先定义列表长度是指子列表编码后的长度之和。
如果列表长度小于55,编码结果第一位是192加列表长度的编码的长度,然后依次连接各子列表的编码。
注意规则4本身是递归定义的。
例6:["abc", "def"]的编码结果是200 131 97 98 99 131 100 101 102。
其中abc的编码为131 97 98 99,def的编码为131 100 101 102。两个子字符串的编码后总长度是8,因此编码结果第一位计算得出:192 + 8 = 200。
如果列表长度超过55,编码结果第一位是247加列表长度的编码长度,然后是列表长度本身的编码,最后依次连接各子列表的编码。
规则5本身也是递归定义的,和规则3相似。
例7:
["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]
的编码结果是:
248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
其中前两个字节的计算方式如下:
248 = 247 +1
88 = 86 + 2,在规则3的示例中,长度为86,而在此例中,由于有两个子字符串,每个子字符串本身的长度的编码各占1字节,因此总共占2字节。
第3个字节179依据规则2得出179 = 128 + 51
第55个字节163同样依据规则2得出163 = 128 + 35
例8:最后我们再来看个稍复杂点的例子以加深理解递归长度前缀,
["abc",["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]]
编码结果是:
248 94 131 97 98 99 248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
列表第一项字符串abc根据规则2,编码结果为131 97 98 99,长度为4。
列表第二项也是一个列表项:
["The length of this sentence is more than 55 bytes, ", "I know it because I pre-designed it"]
根据规则5,结果为
248 88 179 84 104 101 32 108 101 110 103 116 104 32 111 102 32 116 104 105 115 32 115 101 110 116 101 110 99 101 32 105 115 32 109 111 114 101 32 116 104 97 110 32 53 53 32 98 121 116 101 115 44 32 163 73 32 107 110 111 119 32 105 116 32 98 101 99 97 117 115 101 32 73 32 112 114 101 45 100 101 115 105 103 110 101 100 32 105 116
长度为90,因此,整个列表的编码结果第二位是90 + 4 = 94, 占用1个字节,第一位247 + 1 = 248
以上5条就是RPL的全部编码规则。
各语言在具体实现RLP编码时,首先需要将对像映射成byte数组或列表两种形式。以go语言编码struct为例,会将其映射为列表,例如Student这个对象处理成列表["icattlecoder","male"]
如果编码map类型,可以采用以下列表形式:
[["",""],["",""],["",""]]
解码时,首先根据编码结果第一个字节f的大小,执行以下的规则判断:
1.如果f∈ [0,128),那么它是一个字节本身。
2.如果f∈[128,184),那么它是一个长度不超过55的byte数组,数组的长度为 l=f-128
3.如果f∈[184,192),那么它是一个长度超过55的数组,长度本身的编码长度ll=f-183,然后从第二个字节开始读取长度为ll的bytes,按照BigEndian编码成整数l,l即为数组的长度。
4.如果f∈(192,247],那么它是一个编码后总长度不超过55的列表,列表长度为l=f-192。递归使用规则1~4进行解码。
5.如果f∈(247,256],那么它是编码后长度大于55的列表,其长度本身的编码长度ll=f-247,然后从第二个字节读取长度为ll的bytes,按BigEndian编码成整数l,l即为子列表长度。然后递归根据解码规则进行解码。
以上解释了什么叫递归长度前缀编码,这个名字本身很好的解释了编码规则。
(1) 以太坊源码学习—RLP编码( https://segmentfault.com/a/1190000011763339 )
(2)简单分析RLP编码原理
( https://blog.csdn.net/itchosen/article/details/78183991 )
❼ et h acre可以组成什么单词
ethacre这些字母可以组成的英文单词为“teacher”。
单词:teacher
单词发音:英 [ˈtiːtʃə]、美 [ˈtiːtʃər]
单词释义:n. 教师。
词组短语
english teacher英语教师
good teacher良师,好老师
teacher ecation教师教育;师范教育
teacher training教师培训;师资训练
chinese teacher中文老师,汉语教师;语文老师
music teacher音乐老师
class teacher班主任;班级教师
science teacher科学教师;理科教员
head teacher(英 国)校长
primary school teacher小学教师
grade teacher小学教师
teacher resources教师资源;教学资源
substitute teacher代课老师
student teacher实习教师
senior teacher高级教师
assistant teacher助教,助理教师;一般教学人员
private teacher私人教师;家庭教师
practice teacher实习教师
teacher ecation program教育学程
双语例句
用作名词(n.)
I asked the teacher for her advice.
我征求这位老师的意见。She is a teacher aged only twenty.
她是一位年仅二十岁的教师。My foreign teacher came from Australia.
我的外籍教师来自澳大利亚。The maths teacher was furious and gave me 50 lines.
数学老师气坏了,罚我抄书50行。My mother is a teacher.
我母亲是一位教师。