ethtrunk链路聚合模式
① 以太网链路聚合Eth-Trunk
负载分担、增加带宽、提高可靠性
1.创建链路聚合组
2.配置链路聚合模式
改变Eth-Trunk工作模式前应确保该Eth-Trunk中没有加入任何成员接口,否则无法更改Eth-Trunk的工作模式。
3.将成员接口加入聚合组
1.最多加入8个成员
2.每个成员不能配置任何业务和静态MAC地址
3.一个接口只能属于一个Eth-Trunk
4.如果本地设备创建了Eth-Trunk接口,与成员接口直连的对端也必须如此
5.Eth-Trunk链路两端相连的各成员以太网接口的数量、速率、双工模式都必须一样
1.优先级 + System_id(mac地址)
0-65535 15bit 默认取 32768 越小越优
2.协商最大的活跃接口 8条
以最小值的最大活跃数协商(无关主动被动)
3.协商活跃端口号(主动端控制)
本地协商 端口优先级 65535 32768 以小为优 + 端口号
【示例一】配置静态模式的链路聚合
【示例二】配置LACP模式的链路聚合
② 交换机链路聚合手工模式和LACP模式的区别
链路聚合技术主要有以下三个优势:
1、增加带宽
链路聚合接口的最大带宽可以达到各成员接口带宽之和。
2、提高可靠性
当某条活动链路出现故障时,流量可以切换到其他可用的成员链路上,从而提高链
路聚合接口的可靠性。
3、负载分担
在一个链路聚合组内,可以实现在各成员活动链路上的负载分担。
手工模式链路聚合:手工模式下,Eth-Trunk的建立、成员接口的加入由手工配置,没有链路聚合控制协议LACP的参与。当需要在两个直连设备间提供一个较大的链路带宽而设备又不支持LACP协议时,可以使用手工模式。手工模式可以实现增加带宽、提高可靠性、负载分担的目的。当一条链路故障时,故障链路无法转发数据,链路聚合组自动在剩余的两条活动链路中分担流量。手工模式Eth-Trunk可以完成多个物理接口聚合成一个Eth-Trunk口来提高带宽,同时能够检测到同一聚合组内的成员链路有断路等有限故障,但是无法检
测到链路层故障、链路错连等故障。
LACP 模式链路聚合:为了提高Eth-Trunk的容错性,并且能提供备份功能,保证成员链路的高可靠性,出现了链路聚合控制协议LACP(Link Aggregation Control Protocol),LACP模式就是采用LACP 的一种链路聚合模式。
LACP为交换数据的设备提供一种标准的协商方式,以供设备根据自身配置自动形成聚合链路并启动聚合链路收发数据。聚合链路形成以后,LACP负责维护链路状态,在聚合条件发生变化时,自动调整或解散链路聚合。
希望这个回答对你有帮助
③ 华为——二层链路聚合Eth-Trunk (LACP和手工模式)
本文将探讨华为设备中的二层链路聚合Eth-Trunk配置,包括两种模式:LACP和手工模式。此配置有助于提高带宽和实现负载均衡。
实验首先构建拓扑结构,然后通过具体操作实现Eth-Trunk配置。具体操作分为手工配置和LACP-Static配置两部分。
手工配置中,通过在LSW1和LSW2上创建Eth-Trunk接口并指定模式为手动模式,实现接口的负载均衡和带宽增加。通过命令行操作,设置物理接口加入Eth-Trunk接口。实验结果表明,Eth-Trunk接口及其关联物理接口状态均为up,实现负载均衡,带宽为3G。
手工配置模式下,Eth-Trunk接口的配置灵活,无需协商,配置简单快速,且接口状态不受关联物理接口的影响,易于管理。
LACP-Static配置则需要两端设备都配置为LACP模式才能实现Eth-Trunk接口的正常工作。实验结果显示,在LACP-Static模式下,配置完成后Eth-Trunk接口状态正常,数据转发通道稳定。
通过比较两种配置方式,可以发现LACP-Static配置依赖于两端设备的同步工作,而手工配置则更为灵活且易于管理。此外,Eth-Trunk配置还能实现链路聚合,增加带宽,提高链路可靠性,确保数据传输的稳定性。
实验总结,Eth-Trunk链路聚合技术能够有效提高网络带宽和稳定性,同时简化网络管理。配置时,需要确保两端设备的配置一致,以实现Eth-Trunk接口的正常工作。