当前位置:首页 » 币种行情 » 基于ltc6820

基于ltc6820

发布时间: 2022-08-09 01:26:30

A. 数字货币中的LTC是什么

莱特币,是一种基于“点对点”(peer-to-peer)技术的网络货币,也是MIT/X11许可下的一个开源软件项目。它可以帮助用户即时付款给世界上任何一个人,DCPRO上就有这种。

B. 低压差线性稳压器设计原理与应用的目录

前言
第一章低压差线性稳压器概述
第一节低压差线性稳压器的术语
第二节线性稳压器的原理及内部保护电路
一、线性稳压器的原理
二、线性稳压器的内部保护电路
第三节线性稳压器典型产品的原理及典型应用
一、三端固定式稳压器的原理及典型应用
二、三端可调式稳压器的原理及典型应用
第四节低压差线性稳压器的原理
一、PNP型低压差线性稳压器(LDO)的原理
二、准低压差线性稳压器(QLDO)的原理
三、超低压差线性稳压器(VLDO)的原理
第五节低压差线性稳压器的主要特点及产品分类
一、低压差线性稳压器的主要特点
二、低压差线性稳压器的产品分类
三、低压差线性稳压器与其他稳压器的性能比较
第六节低压差线性稳压器的应用领域及典型用法
一、低压差线性稳压器的应用领域
二、低压差线性稳压器的几种典型用法
第七节低压差线性稳压器的选择方法及使用注意事项
一、低压差线性稳压器的选择方法
二、低压差线性稳压器的使用注意事项
第八节低压差线性稳压器典型产品的主要技术指标
第二章低压差线性稳压器设计软件使用方法及设计实例
第一节低压差线性稳压器设计软件的分类
第二节LDO-It设计软件的工具栏及使用方法
一、LDO-It设计软件的工具栏
二、LDO-It设计软件的使用方法
第三节LDO-It设计软件的应用实例
第四节利用WEBENCH软件在线选择低压差线性稳压器的方法
第三章低压差线性稳压器的原理与应用
第一节LM1117型准低压差线性稳压器
一、LN1117型准低压差线性稳压器的原理
二、LM1117型准低压差线性稳压器的应用
第二节SPX1117型准低压差线性稳压器
一、SPX1117型准低压差线性稳压器的原理
二、SPX1117型准低压差线性稳压器的应用
第三节LP2950/2951型低压差线性稳压器
一、LP2950/2951型低压差线性稳压器的原理
二、LP2951型低压差线性稳压器的应用
第四节LM2990/2991型负压输出式低压差线性稳压器
一、LM2990/2991型低压差线性稳压器的原理
二、LM2990型低压差线性稳压器的应用
三、LM2991型低压差线性稳压器的应用
第五节MIC68200型具有排序与跟踪功能的低压差线性稳压器
一、MIC68200型低压差线性稳压器的原理
二、MIC68200型低压差线性稳压器的应用
第六节其他低压差线性稳压器的典型应用及使用技巧
一、LM2937型低压差线性稳压器的典型应用
二、MIC2941A型低压差线性稳压器的典型应用及使用技巧
三、NCV8675型低压差线性稳压器的典型应用
四、NCP1086型低压差线性稳压器的使用技巧
第四章超低压差线性稳压器的原理与应用
第一节TC10XX/20XX系列高精度超低压差线性稳压器
一、TC10XX/20XX系列超低压差线性稳压器的性能特点
二、TC10XX/20XX系列超低压差线性稳压器的原理与应用
三、使用注意事项
第二节MCP17XX/18XX系列高精度超低压差线性稳压器
一、MCP17XX/18XX系列超低压差线性稳压器的性能特点
二、MCP1700/1702超低压差线性稳压器的原理与应用
三、MCP1725/1726/1727/1827/1827S超低压差线性稳压器的原理与应用
第三节SP62XX系列超低压差线性稳压器
一、SP62XX系列超低压差线性稳压器的性能特点
二、SP6200/6201型超低压差线性稳压器的原理与应用
三、SP6203/6205型超低压差线性稳压器的原理与应用
第四节TPS73XX系列具有延时复位功能的超低压差线性稳压器
一、TPS73XX系列超低压差线性稳压器的性能特点
二、TPS73XX系列超低压差线性稳压器的原理
三、TPS73XX系列超低压差线性稳压器的典型应用
第五节MAX483X系列具有软启动功能的超低压差线性稳压器
一、MAX483XX系列超低压差线性稳压器的原理
二、MAX483XX系列超低压差线性稳压器的典型应用
第六节HT71XX/72XX系列高输入电压的超低压差线性稳压器
一、HT71XX/72XX系列超低压差线性稳压器的原理
二、HT71XX系列超低压差线性稳压器的应用技巧
第七节其他超低压差线性稳压器的原理与应用
一、MAX1735型超低压差线性稳压器的原理与应用
二、MAX5005型超低压差线性稳压器的原理与应用
三、LP38851型超低压差线性稳压器的应用
第五章多路输出式超低压差线性稳压器的原理与应用
第一节双路输出式超低压差线性稳压器
一、TC1301/1302系列双路输出式VLDO的原理
二、TC1301/1302系列双路输出式VLDO的典型应用
第二节三路输出式超低压差线性稳压器
一、MIC2215型三路输出式VLDO的原理
二、MIC2215型三路输出式VLDO的典型应用
第三节一次性可编程四路输出式超低压差线性稳压器
一、AS1352型可编程四路输出式VLDO的原理
二、AS1352型可编程四路输出式VLDO的典型应用
第四节带串行接口的可编程五路输出式超低压差线性稳压器
一、MAX1798/1799型带串行接口的五路输出式VLDO的原理
二、MAX1798/1799在CDMA数字移动电话中的应用
三、MAX1799的评估板及专用工具软件
第五节其他多路输出式低压差、超低压差线性稳压器的原理与应用
一、LM2935型双路输出式LDO的原理与应用
二、CAT6221型双路输出式VLDO的原理与应用
三、LP2966型双路输出式VLDO的原理与应用
四、R5320X系列三路输出式VLDO的原理与应用
第六章大电流输出式低压差线性稳压器的原理与应用
第一节1.5A低压差、超低压差线性稳压器
一、MSK5101型1.5A大电流LDO的原理与应用
二、LTC3026型升压变换式1.5A大电流VLDO的原理与应用
第二节3A低压差、超低压差线性稳压器
一、LP38501-ADJ/38503-ADJ型3A大电流VLDO的原理与应用
二、SPX1582型3A大电流LDO的原理与应用
第三节适用于USB系统的3A低压差线性稳压器
一、MIC29311型3A大电流LDO的原理
二、MIC29311型3A大电流LDO的典型应用
第四节5A低压差线性稳压器
一、LMS1585A型5A大电流LD0的典型应用
二、DF1084型5A大电流LDO的典型应用
三、SPX1585型5A大电流LDO的典型应用
第五节7.5A/8A低压差线性稳压器
一、MIC2971X/2975X系列7.5A大电流LDO的原理与应用
二、SPX1584型8A大电流LDO的典型应用
第七章特种低压差线性稳压器的原理与应用
第一节高压输入式低压差线性稳压器
一、MAX8718/8719型28v高压输入式LDO的原理与应用
二、LT3012/3014型80V高压输入式LDO的原理与应用
第二节具有峰值电流输出能力的低压差线性稳压器
一、MIC5216型具有峰值输出能力的LD0的原理与应用
二、峰值电流输出的应用实例
第三节单路输出式低压差和超低压差线性稳压控制器
一、LT1123型低压差线性稳压控制器的原理与应用
二、MIC5156型超低压差线性稳压控制器的原理与应用
第四节多路输出式超低压差线性稳压控制器
一、MAX8563/8564型超低压差线性稳压控制器的原理
二、MAX8563/8564型超低压差线性稳压控制器的典型应用
第五节带DC/DC变换器的复合式低压差和超低压差线性稳压器
一、LTC3448型复合式低压差线性稳压器的原理与应用
二、TC1304型复合式超低压差线性稳压器的原理与应用
第六节带超低压差线性稳压器的可编程锂离子电池充电器
一、带vIDO的可编程锂离子电池充电器的原理
二、带VLDO的可编程锂离子电池充电器的典型应用
第七节LM2984/2984C型基于LDO的微处理器电源系统
一、LM2984/2984C型微处理器电源系统的原理
二、LM2984/2984C型微处理器电源系统的典型应用
第八章低压差线性稳压器的电路设计
第一节低压差线性稳压器的设计要点
一、低压差线性稳压器的基本类型
二、低压差线性稳压器电路设计要点
三、低压差线性稳压器的布局
四、低压差线性稳压器及散热器的装配技术
第二节低压差线性稳压器关键外围元器件的选择
一、输入电容器、输出电容器及旁路电容器的选择
二、外部取样电阻及电流检测电阻的选择
三、外部功率MOSFET的选择
四、低压差线性稳压器封装形式的选择
第三节低压差线性稳压器常见故障分析
一、低压差线性稳压器常见故障一览表
二、低压差线性稳压器常见故障分析
第四节提高低压差线性稳压器输出电压精度的方法
一、影响LDO输出电压精度的主要因素
二、提高LDO输出电压精度的方法
第五节减小浪涌电流及改善瞬态响应的方法
一、减小LDO浪涌电流的方法
二、改善LDO瞬态响应的方法
三、LDO瞬态响应的测试方法
第六节可编程低压差线性稳压器的电路设计
一、数字电位器的原理
二、可编程低压差线性稳压器的电路设计
第九章低压差线性稳压器的使用技巧
第一节提高低压差线性稳压器输入电压的方法
第二节利用外部双极型晶体管扩展LDO负载电流的方法
一、MAX8863型超低压差线性稳压器的原理与应用
二、利用晶体管扩展MAX8863负载电流的方法
第三节利用外部场效应晶体管扩展LDO负载电流的方法
一、MIC5158型低压差线性稳压控制器的基本应用
二、利用场效应晶体管扩展MIC5158负载电流的方法
第四节低压差线性稳压器的并联使用方法
第五节能从零伏起调的低压差线性稳压器应用电路
一、可调式低压差线性稳压器的典型应用电路
二、能实现低压差线性稳压器从零伏起调的两种方法
第六节由低压差线性稳压器构成恒流源的方法
一、由低压差线性稳压器构成的简易恒流源
二、由超低压差线性稳压控制器构成的恒流源
第十章低压差线性稳压器的应用实例
第一节低压差线性稳压器在计算机电源中的应用
一、对计算机电源的设计要求
二、5V/3.3V低压差电源变换器的设计方案
三、获取其他输出电压标称值的简便方法
四、多路输出式低压差线性稳压器的设计方案
第二节低压差线性稳压器在便携式电子产品中的应用
一、对便携式电子产品电源的设计要求
二、减小低压差线性稳压器互相干扰的方法
第三节低压差线性稳压器在精密数控基准电压源中的应用
一、MAX5130A的原理
二、精密数控基准电压源的电路设计
第十一章低压差线性稳压器的散热器设计
第一节散热器的基本工作原理与安装方法
一、LD0的工作寿命与最高结温的关系
二、散热器的基本工作原理
三、塑料封装式LDO的散热器安装方法
第二节平板式散热器的设计
一、平板式散热器的设计方法
二、印制板式散热器的设计方法
第三节成品散热器的热参数与热参数计算
一、成品散热器的热参数
二、成品散热器的热参数计算
第四节大电流输出式LDO的散热器设计
一、大电流输出式LDO的散热曲线图
二、大电流输出式LDO的散热器设计示例
第五节在风冷条件下的散热器设计
一、在风冷条件下的散热器选择
二、散热器的特性曲线
三、利用功率分配电阻来减小散热器尺寸的方法
第六节不同封装的LDO散热器设计实例
第七节多片LDO并联使用散热器的设计实例
第八节设计散热器的常用工具软件
一、设计线性稳压器散热器的通用工具软件
二、设计低压差线性稳压器散热器的专用工具软件
参考文献

C. LTC6804可以和TL494直接连接吗

摘要 BMS是BATTERY MANAGEMENT SYSTEM的简称,即电池管理系统,它是电池与用户之间的纽带,主要对象是二次电池。是为了能够提高电池的利用率,防止电池出现过度充电和过度放电,延长电池的使用寿命,监控电池的状态。随着电池管理系统的发展,也会增添其它的功能。

D. 莱特币是什么 莱特币与比特币的区别在哪里

莱特币Litecoin(简写:LTC,货币符号:Ł)是一种基于“点对点”(peer-to-peer)技术的网络货币,也是MIT/X11许可下的一个开源软件项目。它可以帮助用户即时付款给世界上任何一个人。
莱特币与比特币有什么区别:
1.交易:
更容易使用,量更大,升值潜力更大。block确认时间更短,比Bitcoin的交易是快4倍。例如披萨店老板更愿意接受交易LTC付款以节省交易时间。
2.挖矿
特的算法造就了LTC特有的魅力,我觉得这也是从山寨币中脱颖而出的关键,scrypt算法使用SHA256作为其子程序,而scrypt自身需要大量的内存,每个散列作为输入的种子使用的,然后与需要大量的内存存储另一种子伪随机序列,共同生成序列的伪随机点而输出哈希值。关键就在于scrypt算法计算时需要大量的内存,而单纯的SHA256算法不需要。所以在这个显卡BTC挖矿马上要结束的时代,LTC挖矿马上要迎来黄金发展期,因为内存成本太高,任何ASIC,FPGA都没有显卡挖LTC有优势,至少可预见的未来是的。
3.比特币最大的威胁51%攻击:
有些山寨就是死在51%攻击上的,那么LTC呢,实话实说,这是LTC发展的隐忧,当然也是BTC的隐忧但两者具体面临的问题有所不同:BTC可以通过技术升级(比如末区块重建,小心细致的节点升级,在计算难度)可以规避51%攻击,但LTC的技术规避现在还没有方法,不过由于显卡挖矿的计算能力的分散,同时随着难度的提升,这个问题是需要关注,但不要太担心的。而BTC随着ASIC的使用,计算能力集中的51%攻击的风险在增加,希望BTC开发团队早日着手解决。

E. 微观经济学ltc是什么意思

长期总成本曲线(long-run total cost)。

长期成本曲线是成本函数模型随着时间的推移这种最小的成本,这意味着投入是不固定的。使用长期成本曲线,企业可以扩大生产资料的规模以降低生产商品的成本。

微观经济分析中使用了三个主要成本函数(或“曲线”):

1、 长期总成本(LRTC) 是成本函数,表示所有产品的生产总成本。

2、 长期平均成本(LRAC) 是成本函数,表示生产某种商品的每单位平均成本。

3、 长期边际成本(LRMC) 是成本函数,表示多生产一单位某种商品的成本。

公司理想化的“长期”是指公司在其生产技术中可以采用的投入(例如生产要素)没有基于时间的限制。

例如,企业不能在短期内增建工厂,但从长远来看,这种限制并不适用。由于预测引入了复杂性,公司通常假设长期成本基于公司当前面临的技术、信息和价格。长期成本曲线并不试图预测公司、技术或行业的变化。它仅反映了在当前期间对更改投入没有限制的情况下,成本将如何不同。

特征

长期总成本LTC曲线是从原点出发向右上方倾斜的。当产量为零时,长期总成本为零,以后随着产量的增加,长期总成本是增加的。

长期总成本LTC曲线的斜率先递增速度增加;进而以递减速度增加,经拐点之后,又变为以递增的速度增加。

LTC曲线的形状主要是由规模经济因素决定的。在开始生产时,要投入大量生产要素,而当产量少时,这些生产要素无法得到充分利用,因此,LTC曲线很陡。

随着产量的增加,生产要素开始得到充分利用,这时成本增加的比率小于产量增加的比率,表现为规模报酬递增。最后,由于规模报酬递减,成本的增加比率又大于产量增加的比率。

可见,LTC曲线的特征是由规模报酬的变化所决定的。

F. 在微观经济学ltc是什么意思

长期成本曲线,Long-Run Total Cost (LTC)。

在经济学中,成本函数表示生产一定数量的某种商品的最低成本。在长期成本曲线是成本函数模型随着时间的推移这种最小的成本,这意味着投入是不固定的。使用长期成本曲线,企业可以扩大生产资料的规模以降低生产商品的成本。

微观经济分析中使用了三个主要成本函数(或“曲线”):

1、 长期总成本(LRTC) 是成本函数,表示所有产品的生产总成本。

2、 长期平均成本(LRAC) 是成本函数,表示生产某种商品的每单位平均成本。

3、 长期边际成本(LRMC) 是成本函数,表示多生产一单位某种商品的成本。

公司理想化的“长期”是指公司在其生产技术中可以采用的投入(例如生产要素)没有基于时间的限制。

例如,企业不能在短期内增建工厂,但从长远来看,这种限制并不适用。由于预测引入了复杂性,公司通常假设长期成本基于公司当前面临的技术、信息和价格。长期成本曲线并不试图预测公司、技术或行业的变化。它仅反映了在当前期间对更改投入没有限制的情况下,成本将如何不同。

理想的成本曲线假设技术效率,因为公司总是有尽可能提高技术效率的动机。企业有多种方法来使用不同数量的投入,他们为任何给定的产出量(生产的数量)选择最低总成本的方法。

例如,如果一家微型企业想要制作一些别针,最便宜的方法可能是聘请一个多面手,买一点废金属,让他在家工作。但是,如果一家公司想要生产数千个别针,可以通过租用工厂、购买专用设备并雇用工厂工人的装配线在生产别针的每个阶段执行专门操作来实现最低的总成本。

在短期内,公司可能没有时间租用工厂、购买专用工具和雇用工厂工人。在这种情况下,公司将无法实现短期最低成本,但长期成本会低得多。长期生产选择的增加意味着长期成本等于或小于短期成本,其他条件不变。

术语曲线并不一定意味着成本函数具有任何曲率。然而,许多经济模型假设成本曲线是可微的,因此 LRMC 是明确定义的。传统上,成本曲线的横轴为数量,纵轴为成本。

规模经济

长期总成本以规模经济和规模报酬为导向。

1、规模经济:对于相对较小的生产水平,企业往往会经历规模经济和规模报酬递增。这是因为经营规模的增加(公司控制下的所有投入按比例增加)会影响生产成本。

2、规模不经济:对于相对较大的生产水平,企业往往会经历规模不经济和规模报酬递减。这是因为运营规模的增加会影响生产成本。

G. LTC是什么

LTC是莱特币的简写,莱特币受到了比特币(BTC)的启发,并且在技术上具有相同的实现原理,莱特币的创造和转让基于一种开源的加密协议,不受到任何中央机构的管理。

有关莱特币LTC的行情可以在英为财情查询到

莱特币

H. LTC是什么 能用来干嘛 是类似Q币吗

LTC (litecoin) 莱特币
一种类似比特币(BTC)的电子货币。LTC官网上有句名言:We wanted to make a coin that is silver to Bitcoin's gold。目前利用GPU生产LTC的收益比BTC高出30%。

热点内容
挖矿软件怎样网络推广交易 发布:2024-04-19 09:39:25 浏览:778
pi币怎么挖矿 发布:2024-04-19 09:29:02 浏览:353
在中国网络挖矿会违法吗 发布:2024-04-19 09:16:48 浏览:213
张鹏老师区块链 发布:2024-04-19 09:12:31 浏览:853
高盛区块链app 发布:2024-04-19 08:55:01 浏览:506
哥伦布挖矿怎么分节点 发布:2024-04-19 08:54:07 浏览:724
比特币交易平台钱包地址是什么意思 发布:2024-04-19 08:27:38 浏览:672
蓝鲸和元宇宙是什么游戏 发布:2024-04-19 08:26:54 浏览:996
eth未来价 发布:2024-04-19 08:21:51 浏览:504
斯坦福区块链课程 发布:2024-04-19 08:11:32 浏览:414