ltc220
Ⅰ 关于微观经济学的问题
解答:(1)根据题意,有:LMC=且完全竞争厂商的P=MR,根据已知条件P=100,故有MR=100。由利润最大化的原则MR=LMC,得:3Q2-24Q+40=100整理得
Q2-8Q-20=0解得Q=10(负值舍去了)又因为平均成本函数SAC(Q)=所以,以Q=10代入上式,得:平均成本值SAC=102-12×10+40=20最后,利润=TR-STC=PQ-STC
=(100×10)-(103-12×102+40×10)=1000-200=800因此,当市场价格P=100时,厂商实现MR=LMC时的产量Q=10,平均成本SAC=20,利润为л=800。(2)由已知的LTC函数,可得:LAC(Q)=令,即有:,解得Q=6且>0解得Q=6所以Q=6是长期平均成本最小化的解。以Q=6代入LAC(Q),得平均成本的最小值为:LAC=62-12×6+40=4由于完全竞争行业长期均衡时的价格等于厂商的最小的长期平均成本,所以,该行业长期均衡时的价格P=4,单个厂商的产量Q=6。(3)由于完全竞争的成本不变行业的长期供给曲线是一条水平线,且相应的市场长期均衡价格是固定的,它等于单个厂商的最低的长期平均成本,所以,本题的市场的长期均衡价格固定为P=4。以P=4代入市场需求函数Q=660-15P,便可以得到市场的长期均衡数量为Q=660-15×4=600。现已求得在市场实现长期均衡时,市场均衡数量Q=600,单个厂商的均衡产量Q=6,于是,行业长期均衡时的厂商数量=600÷6=100(家)。
Ⅱ 电容有什么作用
一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。而主板上的滤波电容正是工作在高频环境下,选用低频的滤波电容当然容易损坏了。因此,我们在选购和更换主板滤波电容时,不仅要注意电容的耐压值、容量和耐温值,还要注意它是否是高频滤波电容 不是越高越好的,我们还要考虑容抗还有放电等因素,电容太高了会导致放电不足和电流过低 电解电容(就是CPU旁边那电容),是要分极性的,其二,电脑主板是多层金属孔化孔印制板,如果要换,你得考虑你的焊接技术,不换吗,当然对电脑有影响的,影响的程度和供电的电路有关,烧主板是不会的 电容都是Low Z(impedance)的,是5V转Vcore的滤波电容,器外观颜色比较特别. 一般来说, 选择输出滤波电容主要是为了获得好的滤波效果,输出电压的纹波与芯片的工作方式(升压或降压)以及工作原理有关,单相和多相的计算方法是不同的。举例来说,假如使用LTC3406B芯片,△Vout≈△IL(ESR+1/8fCout), 其中,△Vout是输出电压的纹波,△IL是电感的纹波电流,ESR是输出滤波电容的内阻,f 是DC/DC的开关频率, Cout是输出滤波电容的容值。 通过该公式,可以方便地计算出需要的电容参数。 第一点:电容 电容是保证主板质量的关键,也是衡量主板做工的重点。电容在主板中的作用主要是用于保证电压和电流的稳定(起到滤波的作用)。例如,处理器(CPU)的耗电量是瞬息万变、极不稳定的,一会儿突然增大,一会儿又突然减小,如果把处理器的耗电量比作河水的话,那么这河水一会儿是涓涓细流、一会儿又变成滔滔洪水,而电容所起的作用就是像水库一样,通过不断的蓄水放水来达到保证平衡的目的。 主板上的电容通常有两种,一种是铝电容(电解电容),另一种是钽电容。铝电容在一般品牌的主板上最为常见,容量较大(当然也可以有小容量的)、价格较低是这种电容的优点,但随着使用年限的增加,这种电容会逐渐失去电容能力;此外,这种电容容易受到高温的影响,准确度不高。一般说来,CPU插槽附近的电解电容的数量较多,单个电容的容量应该大一些;按照Intel发给各大主板厂商的主板技术白皮书中的要求,为了保证系统的稳定性,奔腾II、奔腾IIICPU插槽附近的滤波电容的单个容量最低也不应低于1000微法,一般主板多采用1000微法容量的电解电容(真会精打细算),只有极少数的主板会不惜成本采用更大容量的电容,例如素以用料疯狂而著称的Intel原装主板,CPU插槽附近的滤波电容单个容量高达3300微法,足以令任何挑剔的玩家闭上嘴,这种主板的稳定性如何也就可想而知了。对于超频玩家来说, 大容量的滤波电容可以更有效地过滤因CPU超频而产生的信号杂波,而且一块超频性能出众的主板也必须有高品质、大容量的滤波电容才行。另外,滤波电容的表面一般都标有其临界温度指标,一般不应低于105摄氏度,如果发现某块主板滤波电容的临界温度低于这一标准的话,那就赶快逃跑吧。钽电容的优点是寿命长(类似乌龟),准确度高,耐高温,缺点是容量较小,价格昂贵。严格说来,除了CPU插槽附近,主板上其它的地方最好都用这种电容,因为钽电容不容易引起波形失真的现象,不过除了Intel原装主板外,我还没有看到其他密密麻麻布满钽电容的主板,倒是见到布满密密麻麻小烟囱的主板(那些小烟囱就是电解电容),主要原因还是成本太高。
Ⅲ 第一次做经济学的计算题 不会做。。求高手完全竞争企业的长期成本函数
先求出企业的长期边际成本函数 MC=3Q^2-12q+30,因为该市场为完全竞争市场,所以 MR = P,企业追求最大化利润时,MC=MR=P,即3Q^2-12q+30=66,求得Q=6,代入LTC则成本为:TC=220,收入为TR=66*6=396,利润为:TR-TC = 176
希望帮到了你,满意请点击“选为满意答案”及时采纳,谢谢!
Ⅳ 交流电压有效值怎么求
交流电压表显示的指示都是正弦交流电压的有效值。
正弦交流电压有最大值是有效值的1.414倍。列:220伏的交流电压的最大值是220*1.414=311伏。
Ⅳ 英语六级网课百度云资源
《英语六级真题》网络网盘免费下载
链接: https://pan..com/s/1zAG--7oGN7e-ij-1bB0A5A
简介:英语四六级考试是教育部主管的一项全国性的英语考试,其目的是对大学生的实际英语能力进行客观、准确的测量,为大学英语教学提供测评服务。
Ⅵ IC型号的开头和尾缀代表什么意思
电子元器件,又叫电子芯片,半导体集成电路,广泛应用于各种电子电器设备上.
封装形式:
封装形式是指安装半导体集成电路芯片用的外壳.它不仅起着安装,固定,密封,保护芯片及增强电热性能等方面的作用,而且还通过芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件相连接.衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好.
封装大致经过了如下发展进程:
结构方面:TO->DIP->LCC->QFP->BGA ->CSP;
材料方面:金属,陶瓷->陶瓷,塑料->塑料;
引脚形状:长引线直插->短引线或无引线贴装->球状凸点;
装配方式:通孔插装->表面组装->直接安装.
英文简称
英文全称
中文解释
图片
DIP
Double In-line Package
双列直插式封装.插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种.DIP是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等.
PLCC
Plastic Leaded Chip Carrier
PLCC封装方式,外形呈正方形,32脚封装,四周都有管脚,外形尺寸比DIP封装小得多.PLCC封装适合用SMT表面安装技术在PCB上安装布线,具有外形尺寸小,可靠性高的优点.
PQFP
Plastic Quad Flat Package
PQFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大规模集成电路采用这种封装形式,其引脚数一般都在100以上.
SOP
Small Outline Package
1968~1969年菲为浦公司就开发出小外形封装(SOP).以后逐渐派生出SOJ(J型引脚小外形封装),TSOP(薄小外形封装),VSOP(甚小外形封装),SSOP(缩小型SOP),TSSOP(薄的缩小型SOP)及SOT(小外形晶体管),SOIC(小外形集成电路)等.
www.maxim-ic.com
模拟滤波器 光纤通信 高速信号处理和转换 无线/射频
光线通讯,模拟 显示支持电路 高频模拟和混合信号ASIC
数字转换器,接口,电源管理,电池监控 DC/DC电源 电压基准
MAXIM前缀是"MAX".DALLAS则是以"DS"开头.
MAX×××或MAX××××
说明:1后缀CSA,CWA 其中C表示普通级,S表示表贴,W表示宽体表贴.
2 后缀CWI表示宽体表贴,EEWI宽体工业级表贴,后缀MJA或883为军级.
3 CPA,BCPI,BCPP,CPP,CCPP,CPE,CPD,ACPA后缀均为普通双列直插.
举例MAX202CPE,CPE普通ECPE普通带抗静电保护
MAX202EEPE 工业级抗静电保护(-45℃-85℃) 说明 E指抗静电保护
MAXIM数字排列分类
1字头 模拟器 2字头 滤波器 3字头 多路开关
4字头 放大器 5字头 数模转换器 6字头 电压基准
7字头 电压转换 8字头 复位器 9字头 比较器
DALLAS命名规则
例如DS1210N.S. DS1225Y-100IND
N=工业级
S=表贴宽体 MCG=DIP封
Z=表贴宽体 MNG=DIP工业级
IND=工业级 QCG=PLCC封 Q=QFP
下面是MAXIM的命名规则:
三字母后缀:
例如:MAX358CPD
C = 温度范围
P = 封装类型
D = 管脚数
温度范围:
C = 0℃ 至 70℃ (商业级)
I = -20℃ 至 +85℃ (工业级)
E = -40℃ 至 +85℃ (扩展工业级)
A = -40℃ 至 +85℃ (航空级)
M = -55℃ 至 +125℃ (军品级)
封装类型:
A SSOP(缩小外型封装)
B CERQUAD
C TO-220, TQFP(薄型四方扁平封装)
D 陶瓷铜顶封装
E 四分之一大的小外型封装
F 陶瓷扁平封装
H 模块封装, SBGA(超级球式栅格阵列, 5x5 TQFP)
J CERDIP (陶瓷双列直插)
K TO-3 塑料接脚栅格阵列
L LCC (无引线芯片承载封装)
M MQFP (公制四方扁平封装)
N 窄体塑封双列直插
P 塑封双列直插
Q PLCC (塑料式引线芯片承载封装)
R 窄体陶瓷双列直插封装(300mil)
S 小外型封装
T TO5,TO-99,TO-100
U TSSOP,μMAX,SOT
W 宽体小外型封装(300mil)
X SC-70(3脚,5脚,6脚)
Y 窄体铜顶封装
Z TO-92,MQUAD
/D 裸片
/PR 增强型塑封
/W 晶圆
www.analog.com
DSP信号处理器 放大器工业用器件 通信 电源管理 移动通信
视频/图像处理器等 模拟A/D D/A 转换器 传感器 模拟器件
AD产品以"AD","ADV"居多,也有"OP"或者"REF","AMP","SMP","SSM","TMP","TMS"等开头的.
后缀的说明:1,后缀中J表示民品(0-70℃),N表示普通塑封,后缀中带R表示表示表贴.
2,后缀中带D或Q的表示陶封,工业级(45℃-85℃).后缀中H表示圆帽.
3,后缀中SD或883属军品.
例如:JN DIP封装 JR表贴 JD DIP陶封
www.ti.com
DSP 信号处理器等嵌入式控制器 高性能运放IC 存储器 A/D D/A
模拟器件转换接口IC等 54LS军品系列 CD4000军品系列
工业 / 民用电表微控制器等
TI产品命名规则:SN54LS×××/HC/HCT/或SNJ54LS/HC/HCT中的后缀说明:
SN或SNJ表示TI品牌
SN军标,带N表示DIP封装,带J表示DIP(双列直插),带D表示表贴,带W表示宽体
SNJ军级,后面代尾缀F或/883表示已检验过的军级.
CD54LS×××/HC/HCT:
1,无后缀表示普军级
2,后缀带J或883表示军品级
CD4000/CD45××:
后缀带BCP或BE属军品
后缀带BF属普军级
后缀带BF3A或883属军品级
TL×××:
后缀CP普通级 IP工业级 后缀带D是表贴
后缀带MJB,MJG或带/883的为军品级
TLC表示普通电压 TLV低功耗电压
TMS320系列归属DSP器件, MSP430F微处理器
BB产品命名规则:
前缀ADS模拟器件 后缀U表贴 P是DIP封装 带B表示工业级
前缀INA,XTR,PGA等表示高精度运放 后缀U表贴 P代表DIP PA表示高精度
INTEL产品命名规则: N80C196系列都是单片机 前缀:N=PLCC封装 T=工业级 S=TQFP封装 P=DIP封装 KC20主频 KB主频 MC代表84引角 TE28F640J3A-120 闪存 TE=TSOP DA=SSOP E=TSOP www.issi.com SRAM,SDRAM,EDO/FPM DRAM, EEPROM,8051 系列单片机,ASIC及语音芯片 以"IS"开头 比如:IS61C IS61LV 4×表示DRAM 6×表示SRAM 9×表示EEPROM 封装: PL=PLCC PQ=PQFP T=TSOP TQ=TQFP 高性能模拟器件 电压基准 运算放大器 数/模 模数转换器 电源及马达 控制线路 以产品名称为前缀 LTC1051CS CS表示表贴 LTC1051CN8 CN表示DIP封装8脚 www.amd.com FLASH 快闪记忆体 微处理器 双端口RAM 先进先出器件FIFO 高速静态存储器SRAM 快速逻辑器件FCT 低功耗高速TTL系列 如74FCT16XXX系列 IDT的产品一般都是IDT开头的. 后缀的说明:1,后缀中TP属窄体DIP. 2,后缀中P 属宽体DIP. 3,后缀中J 属 PLCC. 比如:IDT7134SA55P 是DIP封装 IDT7132SA55J 是PLCC IDT7206L25TP 是DIP
看看对你有没有帮助。
Ⅶ 音响3个接口GND +12V REM 如何使用12V独立电瓶接线
GND是接地 (也就是负级),+12v REM并在一起接电池的12v,REM是接开关控制电源。
可以把gnd接负极,rem接+12伏端并接到电源正极。利用电瓶也就是蓄电池直接接就可以使用,关键是那蓄电池必须是12伏的。如果采用220伏降压为12伏的变压器接入,那么必须用220伏降压为13-16伏左右的变压器,输出的低压采用桥式整流并滤波后取得直流12伏电压才可以的。
(7)ltc220扩展阅读:
音频工作站最重要的是还设有AES/EBU以及SPDIF等数字接口,用来进行数字音频信号的输入和输出。另外,一些高档产品还为使用者提供了YAMAHA.PD等其它更多格式的专用接口,这些都是采用ASIC技术开发的;更有甚者,有的厂商甚至在一块芯片上集成了8种协议格式的接口。
另外,数字音频工作站通常还设有MIDI接口、SMPTE时间码接口等。在系统同步方面,几乎所有的产品都有SMPTE时间码发生以及读出电路。最安全的还有VITC、LTC、YV帧等多种时码链锁,这些都是相当成熟的技术。
Ⅷ SOT220和TO220是同种封装吗
不是
SOT是SOP系列封装的一种。
一、 什么叫封装
封装,就是指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连接.封装形式是指安装半导体集成电路芯片用的外壳。它不仅起着安装、固定、密封、保护芯片及增强电热性能等方面的作用,而且还通过芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件相连接,从而实现内部芯片与外部电路的连接。因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能下降。另一方面,封装后的芯片也更便于安装和运输。由于封装技术的好坏还直接影响到芯片自身性能的发挥和与之连接的PCB(印制电路板)的设计和制造,因此它是至关重要的。
衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。封装时主要考虑的因素:
1、 芯片面积与封装面积之比为提高封装效率,尽量接近1:1;
2、 引脚要尽量短以减少延迟,引脚间的距离尽量远,以保证互不干扰,提高性能;
3、 基于散热的要求,封装越薄越好。
封装主要分为DIP双列直插和SMD贴片封装两种。从结构方面,封装经历了最早期的晶体管TO(如TO-89、TO92)封装发展到了双列直插封装,随后由PHILIP公司开发出了SOP小外型封装,以后逐渐派生出SOJ(J型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路)等。从材料介质方面,包括金属、陶瓷、塑料、塑料,目前很多高强度工作条件需求的电路如军工和宇航级别仍有大量的金属封装。
封装大致经过了如下发展进程:
结构方面:TO->DIP->PLCC->QFP->BGA ->CSP;
材料方面:金属、陶瓷->陶瓷、塑料->塑料;
引脚形状:长引线直插->短引线或无引线贴装->球状凸点;
装配方式:通孔插装->表面组装->直接安装
二、 具体的封装形式
1、 SOP/SOIC封装
SOP是英文Small Outline Package 的缩写,即小外形封装。SOP封装技术由1968~1969年菲利浦公司开发成功,以后逐渐派生出SOJ(J型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路)等。
2、 DIP封装
DIP是英文 Double In-line Package的缩写,即双列直插式封装。插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。DIP是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。
< 1 >
3、 PLCC封装
PLCC是英文Plastic Leaded Chip Carrier 的缩写,即塑封J引线芯片封装。PLCC封装方式,外形呈正方形,32脚封装,四周都有管脚,外形尺寸比DIP封装小得多。PLCC封装适合用SMT表面安装技术在PCB上安装布线,具有外形尺寸小、可靠性高的优点。
4、 TQFP封装
TQFP是英文thin quad flat package的缩写,即薄塑封四角扁平封装。四边扁平封装(TQFP)工艺能有效利用空间,从而降低对印刷电路板空间大小的要求。由于缩小了高度和体积,这种封装工艺非常适合对空间要求较高的应用,如 PCMCIA 卡和网络器件。几乎所有ALTERA的CPLD/FPGA都有 TQFP 封装。
5、 PQFP封装
PQFP是英文Plastic Quad Flat Package的缩写,即塑封四角扁平封装。PQFP封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大规模集成电路采用这种封装形式,其引脚数一般都在100以上。
6、 TSOP封装
TSOP是英文Thin Small Outline Package的缩写,即薄型小尺寸封装。TSOP内存封装技术的一个典型特征就是在封装芯片的周围做出引脚, TSOP适合用SMT技术(表面安装技术)在PCB(印制电路板)上安装布线。TSOP封装外形尺寸时,寄生参数(电流大幅度变化时,引起输出电压扰动) 减小,适合高频应用,操作比较方便,可靠性也比较高。
7、 BGA封装
BGA是英文Ball Grid Array Package的缩写,即球栅阵列封装。20世纪90年代随着技术的进步,芯片集成度不断提高,I/O引脚数急剧增加,功耗也随之增大,对集成电路封装的要求也更加严格。为了满足发展的需要,BGA封装开始被应用于生产。
采用BGA技术封装的内存,可以使内存在体积不变的情况下内存容量提高两到三倍,BGA与TSOP相比,具有更小的体积,更好的散热性能和电性能。BGA封装技术使每平方英寸的存储量有了很大提升,采用BGA封装技术的内存产品在相同容量下,体积只有TSOP封装的三分之一;另外,与传统TSOP封装方式相比,BGA封装方式有更加快速和有效的散热途径。
BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。
说到BGA封装就不能不提Kingmax公司的专利TinyBGA技术,TinyBGA英文全称为Tiny Ball Grid Array(小型球栅阵列封装),属于是BGA封装技术的一个分支。是Kingmax公司于1998年8月开发成功的,其芯片面积与封装面积之比不小于1:1.14,可以使内存在体积不变的情况下内存容量提高2~3倍,与TSOP封装产品相比,其具有更小的体积、更好的散热性能和电性能。
采用TinyBGA封装技术的内存产品在相同容量情况下体积只有TSOP封装的1/3。TSOP封装内存的引脚是由芯片四周引出的,而TinyBGA则是由芯片中心方向引
< 2 >
出。这种方式有效地缩短了信号的传导距离,信号传输线的长度仅是传统的TSOP技术的1/4,因此信号的衰减也随之减少。这样不仅大幅提升了芯片的抗干扰、抗噪性能,而且提高了电性能。采用TinyBGA封装芯片可抗高达300MHz的外频,而采用传统TSOP封装技术最高只可抗150MHz的外频。
TinyBGA封装的内存其厚度也更薄(封装高度小于0.8mm),从金属基板到散热体的有效散热路径仅有0.36mm。因此,TinyBGA内存拥有更高的热传导效率,非常适用于长时间运行的系统,稳定性极佳。
三、 国际部分品牌产品的封装命名规则资料
1、 MAXIM 更多资料请参考 www.maxim-ic.com
MAXIM前缀是“MAX”。DALLAS则是以“DS”开头。
MAX×××或MAX××××
说明:
1、后缀CSA、CWA 其中C表示普通级,S表示表贴,W表示宽体表贴。
2、后缀CWI表示宽体表贴,EEWI宽体工业级表贴,后缀MJA或883为军级。
3、CPA、BCPI、BCPP、CPP、CCPP、CPE、CPD、ACPA后缀均为普通双列直插。
举例MAX202CPE、CPE普通ECPE普通带抗静电保护
MAX202EEPE 工业级抗静电保护(-45℃-85℃),说明E指抗静电保护MAXIM数字排列分类
1字头 模拟器 2字头 滤波器 3字头 多路开关
4字头 放大器 5字头 数模转换器 6字头 电压基准
7字头 电压转换 8字头 复位器 9字头 比较器
DALLAS命名规则
例如DS1210N.S. DS1225Y-100IND
N=工业级 S=表贴宽体 MCG=DIP封 Z=表贴宽体 MNG=DIP工业级
IND=工业级 QCG=PLCC封 Q=QFP
2、 ADI 更多资料查看www.analog.com
AD产品以“AD”、“ADV”居多,也有“OP”或者“REF”、“AMP”、“SMP”、“SSM”、“TMP”、“TMS”等开头的。
后缀的说明:
1、后缀中J表示民品(0-70℃),N表示普通塑封,后缀中带R表示表示表贴。
2、后缀中带D或Q的表示陶封,工业级(45℃-85℃)。后缀中H表示圆帽。
3、后缀中SD或883属军品。
例如:JN DIP封装 JR表贴 JD DIP陶封
3、 BB 更多资料查看www.ti.com
BB产品命名规则:
前缀ADS模拟器件 后缀U表贴 P是DIP封装 带B表示工业级 前缀INA、XTR、PGA等表示高精度运放 后缀U表贴 P代表DIP PA表示高精度
4、 INTEL 更多资料查看www.intel.com
INTEL产品命名规则:
< 3 >
N80C196系列都是单片机
前缀:N=PLCC封装 T=工业级 S=TQFP封装 P=DIP封装
KC20主频 KB主频 MC代表84引角
举例:TE28F640J3A-120 闪存 TE=TSOP DA=SSOP E=TSOP
5、 ISSI 更多资料查看www.issi.com
以“IS”开头
比如:IS61C IS61LV 4×表示DRAM 6×表示SRAM 9×表示EEPROM
封装: PL=PLCC PQ=PQFP T=TSOP TQ=TQFP
6、 LINEAR 更多资料查看www.linear-tech.com
以产品名称为前缀
LTC1051CS CS表示表贴
LTC1051CN8 **表示*IP封装8脚
7、 IDT 更多资料查看www.idt.com
IDT的产品一般都是IDT开头的
后缀的说明:
1、后缀中TP属窄体DIP
2、后缀中P 属宽体DIP
3、后缀中J 属PLCC
比如:IDT7134SA55P 是DIP封装
IDT7132SA55J 是PLCC
IDT7206L25TP 是DIP
8、 NS 更多资料查看www.national.com
NS的产品部分以LM 、LF开头的
LM324N 3字头代表民品 带N圆帽
LM224N 2字头代表工业级 带J陶封
LM124J 1字头代表军品 带N塑封
9、 HYNIX 更多资料查看www.hynix.com
封装: DP代表DIP封装 DG代表SOP封装 DT代表TSOP封装。
TO-220封装常见的是3脚,是最见的封装之一。
2脚一般为单个二极管,两个二极管封装在一起的也为3个脚。
4个以上引脚基本上都是集成电路。
这种封装有一面会有裸露的金属片,用于直接与散热器相连,散热效果较好,尽管和TO-3相比热阻比较大,但安装和接接都很简单,在直插式封装中最为常见。但这种封装因金属散热部分直接与引脚连通,如希望与外加的散热器绝缘,则比较麻烦,不仅要加如云母片之类的绝缘垫片,还要另加一个绝缘套管。
Ⅸ 特斯拉线圈问题
http://www.geekfans.com/article-1845-1.html
固态特斯拉线圈制作教程
对与大多数玩了SGTC的人来说都想玩更高级的SSTC/DRSSTC,但是许多人在这是就会遇到困难。
特斯拉线圈介绍
特斯拉线圈又叫泰斯拉线圈,因为这是从"Tesla"这个英文名直接音译过来的。这是一种分布参数高频共振变压器,可以获得上百万伏的高频电压。特斯拉线圈的原理是使用变压器使普通电压升压,然后经由两极线圈,从放电终端放电的设备。通俗一点说,它是一个人工闪电制造器。在世界各地都有特斯拉线圈的爱好者,他们做出了各种各样的设备,制造出了眩目的人工闪电。
谐振定义:
在物理学里,有一个概念叫共振:当策动力的频率和系统的固有频率相等时,系统受迫振动的振幅最大,这种现象叫共振。电路里的谐振其实也是这个意思:当电路的激励的频率等于电路的固有频率时,电路的电磁振荡的振幅也将达到峰值。实际上,共振和谐振表达的是同样一种现象。这种具有相同实质的现象在不同的领域里有不同的叫法而已。(说个易懂的,当两个振动频率相等的物体,一个发生振动时,引起另一个振动的现象叫做共振,在电学中,两个等频振荡电路的共振现象,叫做谐振。)
电磁振荡LC回路
(L:电感,C:电容)
电磁振荡LC回路能产生大小和方向都都作周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。一个不计电阻的LC电路,就可以实现电磁振荡,故也称LC振荡电路。LC振荡电路的物理模型满足下列条件:①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零.②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在.③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波振荡电流是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。其工作流程为:充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的磁场和电场都发生周期性变化,这种现象叫电磁振荡。
在这里我给那些新人们先讲讲特斯拉线圈的分类:
SGTC(Spark Gap Tesla Coil=火花隙特斯拉线圈(特斯拉本人发明的那种)
-分枝:SISGTC(Sidac-IGBT SGTC)=以触发二极管-IGBT替换火花隙的特斯拉线圈
SSTC(Solid State Tesla Coil=固态特斯拉线圈(这里主要讲解的那种)
-分枝:(本文主要讲DRSSTC,由于SSTC的原理相对简单,在看完之后就会明白的)
ISSTC(Interrupted SSTC)=带灭弧固态特斯拉线圈
OLTC(Off Line Tesla coil)=离线式特斯拉线圈
Class-E SSTC=戊类功放式固态特斯拉线圈
DRSSTC(Dual Resonant SSTC)=双谐振固态特斯拉线圈
-分枝:QCWDRSSTC(Quasi Continuous Wave DRSSTC)=准连续波双谐振
固态特斯拉线圈
CWDRSSTC(Continuous Wave DRSSTC)=连续波双谐振固态特斯拉
线圈
VTTC(Vacuum Tube Tesla Coil)=真空管特斯拉线圈
-分枝:SSVC(Solid State Valve Coil)=固态-真空管特斯拉线圈
SGTC:传统的火花隙特斯拉线圈,噪音大,效率低,寿命短,这里就不做过多介绍。
SSTC:现代电子爱好者们根据特斯拉线圈的本质原理,发明了固态特斯拉线圈(SSTC),它具有低噪音、高效率、寿命长的特点,因而得到了很好的发展。固态特斯拉线圈不仅可以产生炫目的闪电,还可以利用电弧演奏音乐!因此特斯拉线圈除了应用于高压领域外,也不失为一件很好的艺术品。
固态特斯拉线圈的原理是:通过驱动电路,将市电(220VAC 50Hz)转换为高频交流电,通过初级线圈转化为高频磁场,当磁场振荡频率和由一端接地的次级线圈和放电端形成的LC体系的固有频率一致时,发生谐振,此时次级线圈将大量电荷送入放电端,使得放电端电压升的很高,从而形成闪电。对于固态特斯拉线圈,他没有电容组,只有驱动电路、初级线圈、次级线圈和放电端,他是依靠驱动电路来产生高频电流,送入初级线圈产生高频磁场;而传统的火花隙特斯拉线圈则是依靠打火开关接通/断开,来激发初级线圈和电容组振荡,产生高频磁场,这是这两者的区别!
总结:SSTC的工作方式是驱动板产生一个震荡电流与次级线圈相同这是就会谐振通过初级耦合将能量传递给次级。因此sstc的驱动板可以简单地看成一个震荡信号发生器。
DRSSTC:由于固态特斯拉线圈驱动电路的负载是一个初级线圈,为感性负载,其功率因数低,能量利用率较低,同时初级线圈电流瞬时值也不够大,所以导致固态特斯拉线圈产生的闪电壮观程度不及同等级的火花隙特斯拉线圈。为此,有爱好者提出了双谐振固态特斯拉线圈(DRSSTC)的模型,以弥补普通固态特斯拉线圈的不足。双谐振固态特斯拉线圈是在普通特斯拉线圈的基础上,在初级线圈上串入电容组,并让驱动电路输出频率=初级LC固有频率=次级LC固有频率,这样做的好处是:1.初级部分处于谐振状态,其负载特性为纯阻性,功率因数高,能量利用率也就提高了;2.由于初级部分是谐振的,导致初级电流上升较快,瞬间电流较大,从而使得产生的闪电比较壮观。因此,双谐振固态特斯拉线圈更受到广大爱好者的欢迎!
总结:DRSSTC和SSTC差不多只不过是多了谐振电容,SSTC的初级线圈只是起耦合的作用不会起产生震荡的作用,而SSTC的初级也是一个LC震荡回路。因此DRSSTC我们可以看做是SGTC的一种升级,取消了变压器和打火器。但是性能却远远高于SGTC。
固态特斯拉线圈的结构
固态特斯拉线圈由三个部分组成:功率电路驱动电路灭弧电路
D3-6是瞬态二极管是用来防止突然来的高压击穿开关管。
C3是吸收电容,由于线路间是存在分布电感的,在高频开关状态下,容易产生寄生振荡和尖峰电压,从而导致开关管损坏,这个电容是起到一个缓冲作用因此必须要加。
这个图有一个问题就是需要在开关管的触发极和低压线上并联30V左右的稳压二极管,防止驱动信号电压过高击穿开关管。
以上的输入电源必须是直流电也就是经过整流桥的市电!
为了产生振荡的电流我们必须要准确地控制开关,在几百KHZ的频率下人去控制肯定是不行的这时就要交给我们的大哥大,也就是“整个TC的心脏”驱动电路了(如果这一节没有看懂也没有关系,只要记住是发出信号控制开关管就行)坛子里很多人都很热衷于STEVE的Dr驱动电路,但是仔细的想想,他这个电路的缺陷还真的是不老少。我们先对其进行分析,一遍指出其优略。
....
Ⅹ 3月11日灰度存持仓多少
3月11日灰度信托持仓量
BTC——总计持有:655355BTC,灰度BTC单价:$53267.69,当前溢价率:-5.4%,24H持仓变化: --35BTC,灰度持仓占比: 3.48%
LTC——总计持有:1463881LTC,灰度LTC单价:$3074.08,当前溢价率:+1408.7%,24H持仓变化: +2449LTC,灰度持仓占比: 1.98%
ETH——总计持有:3173595ETH,灰度ETH单价:$1697.01,当前溢价率:-5.6%,24H持仓变化: --220ETH,灰度持仓占比: 2.56%
BCH——总计持有:293105BCH,灰度BCH单价:$2631.85,当前溢价率:+373.7%,24H持仓变化: +914BCH,灰度持仓占比: 1.44%
ETC——总计持有:12427501ETC,灰度ETC单价:$15.54,当前溢价率:+30.4%24H持仓变化: +82027ETC,灰度持仓占比: 10.57%
ZEC——总计持有:303877ZEC,灰度ZEC单价:--,当前溢价率:--,24H持仓变化: 0ZEC,灰度持仓占比: 3.25%
ZEN——总计持有:604247ZEN,灰度ZEN单价:--,当前溢价率:--,24H持仓变化: 0ZEN,灰度持仓占比: 6.26%
XLM——总计持有:63021829XLM,灰度XLM单价:--,当前溢价率:--,24H持仓变化: 0XLM,灰度持仓占比: 0.25%
链乔教育在线旗下学硕创新区块链技术工作站是中国教育部学校规划建设发展中心开展的“智慧学习工场2020-学硕创新工作站 ”唯一获准的“区块链技术专业”试点工作站。专业站立足为学生提供多样化成长路径,推进专业学位研究生产学研结合培养模式改革,构建应用型、复合型人才培养体系。