ltc感应
1. 特斯拉线圈问题
http://www.geekfans.com/article-1845-1.html
固态特斯拉线圈制作教程
对与大多数玩了SGTC的人来说都想玩更高级的SSTC/DRSSTC,但是许多人在这是就会遇到困难。
特斯拉线圈介绍
特斯拉线圈又叫泰斯拉线圈,因为这是从"Tesla"这个英文名直接音译过来的。这是一种分布参数高频共振变压器,可以获得上百万伏的高频电压。特斯拉线圈的原理是使用变压器使普通电压升压,然后经由两极线圈,从放电终端放电的设备。通俗一点说,它是一个人工闪电制造器。在世界各地都有特斯拉线圈的爱好者,他们做出了各种各样的设备,制造出了眩目的人工闪电。
谐振定义:
在物理学里,有一个概念叫共振:当策动力的频率和系统的固有频率相等时,系统受迫振动的振幅最大,这种现象叫共振。电路里的谐振其实也是这个意思:当电路的激励的频率等于电路的固有频率时,电路的电磁振荡的振幅也将达到峰值。实际上,共振和谐振表达的是同样一种现象。这种具有相同实质的现象在不同的领域里有不同的叫法而已。(说个易懂的,当两个振动频率相等的物体,一个发生振动时,引起另一个振动的现象叫做共振,在电学中,两个等频振荡电路的共振现象,叫做谐振。)
电磁振荡LC回路
(L:电感,C:电容)
电磁振荡LC回路能产生大小和方向都都作周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。一个不计电阻的LC电路,就可以实现电磁振荡,故也称LC振荡电路。LC振荡电路的物理模型满足下列条件:①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零.②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在.③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波振荡电流是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。其工作流程为:充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的磁场和电场都发生周期性变化,这种现象叫电磁振荡。
在这里我给那些新人们先讲讲特斯拉线圈的分类:
SGTC(Spark Gap Tesla Coil=火花隙特斯拉线圈(特斯拉本人发明的那种)
-分枝:SISGTC(Sidac-IGBT SGTC)=以触发二极管-IGBT替换火花隙的特斯拉线圈
SSTC(Solid State Tesla Coil=固态特斯拉线圈(这里主要讲解的那种)
-分枝:(本文主要讲DRSSTC,由于SSTC的原理相对简单,在看完之后就会明白的)
ISSTC(Interrupted SSTC)=带灭弧固态特斯拉线圈
OLTC(Off Line Tesla coil)=离线式特斯拉线圈
Class-E SSTC=戊类功放式固态特斯拉线圈
DRSSTC(Dual Resonant SSTC)=双谐振固态特斯拉线圈
-分枝:QCWDRSSTC(Quasi Continuous Wave DRSSTC)=准连续波双谐振
固态特斯拉线圈
CWDRSSTC(Continuous Wave DRSSTC)=连续波双谐振固态特斯拉
线圈
VTTC(Vacuum Tube Tesla Coil)=真空管特斯拉线圈
-分枝:SSVC(Solid State Valve Coil)=固态-真空管特斯拉线圈
SGTC:传统的火花隙特斯拉线圈,噪音大,效率低,寿命短,这里就不做过多介绍。
SSTC:现代电子爱好者们根据特斯拉线圈的本质原理,发明了固态特斯拉线圈(SSTC),它具有低噪音、高效率、寿命长的特点,因而得到了很好的发展。固态特斯拉线圈不仅可以产生炫目的闪电,还可以利用电弧演奏音乐!因此特斯拉线圈除了应用于高压领域外,也不失为一件很好的艺术品。
固态特斯拉线圈的原理是:通过驱动电路,将市电(220VAC 50Hz)转换为高频交流电,通过初级线圈转化为高频磁场,当磁场振荡频率和由一端接地的次级线圈和放电端形成的LC体系的固有频率一致时,发生谐振,此时次级线圈将大量电荷送入放电端,使得放电端电压升的很高,从而形成闪电。对于固态特斯拉线圈,他没有电容组,只有驱动电路、初级线圈、次级线圈和放电端,他是依靠驱动电路来产生高频电流,送入初级线圈产生高频磁场;而传统的火花隙特斯拉线圈则是依靠打火开关接通/断开,来激发初级线圈和电容组振荡,产生高频磁场,这是这两者的区别!
总结:SSTC的工作方式是驱动板产生一个震荡电流与次级线圈相同这是就会谐振通过初级耦合将能量传递给次级。因此sstc的驱动板可以简单地看成一个震荡信号发生器。
DRSSTC:由于固态特斯拉线圈驱动电路的负载是一个初级线圈,为感性负载,其功率因数低,能量利用率较低,同时初级线圈电流瞬时值也不够大,所以导致固态特斯拉线圈产生的闪电壮观程度不及同等级的火花隙特斯拉线圈。为此,有爱好者提出了双谐振固态特斯拉线圈(DRSSTC)的模型,以弥补普通固态特斯拉线圈的不足。双谐振固态特斯拉线圈是在普通特斯拉线圈的基础上,在初级线圈上串入电容组,并让驱动电路输出频率=初级LC固有频率=次级LC固有频率,这样做的好处是:1.初级部分处于谐振状态,其负载特性为纯阻性,功率因数高,能量利用率也就提高了;2.由于初级部分是谐振的,导致初级电流上升较快,瞬间电流较大,从而使得产生的闪电比较壮观。因此,双谐振固态特斯拉线圈更受到广大爱好者的欢迎!
总结:DRSSTC和SSTC差不多只不过是多了谐振电容,SSTC的初级线圈只是起耦合的作用不会起产生震荡的作用,而SSTC的初级也是一个LC震荡回路。因此DRSSTC我们可以看做是SGTC的一种升级,取消了变压器和打火器。但是性能却远远高于SGTC。
固态特斯拉线圈的结构
固态特斯拉线圈由三个部分组成:功率电路驱动电路灭弧电路
D3-6是瞬态二极管是用来防止突然来的高压击穿开关管。
C3是吸收电容,由于线路间是存在分布电感的,在高频开关状态下,容易产生寄生振荡和尖峰电压,从而导致开关管损坏,这个电容是起到一个缓冲作用因此必须要加。
这个图有一个问题就是需要在开关管的触发极和低压线上并联30V左右的稳压二极管,防止驱动信号电压过高击穿开关管。
以上的输入电源必须是直流电也就是经过整流桥的市电!
为了产生振荡的电流我们必须要准确地控制开关,在几百KHZ的频率下人去控制肯定是不行的这时就要交给我们的大哥大,也就是“整个TC的心脏”驱动电路了(如果这一节没有看懂也没有关系,只要记住是发出信号控制开关管就行)坛子里很多人都很热衷于STEVE的Dr驱动电路,但是仔细的想想,他这个电路的缺陷还真的是不老少。我们先对其进行分析,一遍指出其优略。
....
2. 十大自动门品牌有哪些
多玛自动门怎么样
多玛自动门怎么样?自动门中,多玛自动门的各个方面也都在发生改变,但不变的是让消费者信得过的质量,今天我们就来为大家解答多玛自动门怎么样的问题。
多玛自动门品牌介绍
多玛集团总部位于德国北威州,是全世界门控系统最大的生产商之一,旗下65家全资子公司分布于世界各地44个国家。在闭门器和活动隔音隔断领域里,多玛是公认的世界第一位,现自动门系列产品也跃居世界第一位。多玛集团在欧洲多个国家、新加坡、马来西亚以及中国、美国、巴西都设有工厂。在2004年至2005年(6月30日)财政年度里,多玛的营业额达7亿欧元,雇员人数超过6100人。百年累积的玻璃系统及组件全球领导者,德国多玛DORMA正在构建和完善全国范围的玻璃系统及组件代理销售网络,德国多玛DORMA玻璃系统及组件致力于设计,生产和销售高档室内玻璃门系统和玻璃隔断系统,玻璃门配件和玻璃淋浴房配件。凭着精湛的技术,成熟的产品和完善的服务,多玛玻璃系统及组件可广泛用于高档的室内家居,写字楼,酒店,商场和机场等大型公共建筑。多玛以它五大领域的经典系列产品闻名于世:液压门控产品,自动化产品,玻璃系统组件和配件,安全/门禁系列产品,以及移动隔断产品。在2003/04财政年度,多玛集团在其5500名员工的共同努力下实现了6亿4千9百万欧圆的销售业绩。多玛公司给予建筑师,规划设计和计划工程师发挥创新的灵感提供了极大的支持。
多玛自动门怎么样
多玛的产品主要集中在门控技术系统,是当今世界门控产品市场领导者,多玛有五大领域的经典系列产品闻名于世,其中就有自动门,多玛的产品一直以最佳性价比着称,以优惠的价格提供给消费者最好的质量。在我国,多玛自动门的应用工程非常多,在北京银谷大厦、洛阳市中亚大饭店、天津CBD中心标志性建筑信达广场、东方艺术中心、上海大剧院、及大上海时代广场等多处城市地标建筑。
多玛自动门产品价格
1、多玛新型ES 90Easy
开门宽度:800-3,3000mm 最大门重:2×160kg;1×200kg 机组承重达2*85kg
2、多玛ES-90S自动感应门
电脑控制 可用于单扇平移门、双扇式平移门
3、多玛ES-200型
3. 特斯拉线圈的原理是什么
特斯拉线圈的貌似就是两个谐振线圈。
某网络中介绍特老刚开始做这个的时候是为了与爱迪生OOXX,爱迪生说交流电危险,然后特老就做了个特斯拉线圈,让次级电流通过自己以反驳爱迪生的“谬论”。之后特老就开始向无线输电的方向发展了(特老的无线输电项目成功与否至今还是个迷),特老当年做的TC(特斯拉线圈缩写)都是SGTC(火花间隙特斯拉)。特老之所以厉害是他能在当年就能把SGTC调谐振。
现在特斯拉线圈的分支有很多,最简单的还是SGTC(不过效率低下,所以后来有了晶体管做开关元件的特斯拉线圈,效率大大提升)
OLTC(离线式特斯拉)
SSTC(固态特斯拉,这个的分支还有ISSTC,就是有灭弧的SSTC)
VTTC(电子管特斯拉)
DRSSTC(双谐振固态特斯拉)
如果想做的话做个小的SGTC很简单,成功率也很高(很容易出电弧,但是谐振很难调),如果你认识些卖原件的话,也花不了多少(100~300)不过这个只能拉电弧而且调谐振更会让你纠结好久。
如果想放音乐的话 CLASS-E 的HIFI SSTC也不错,不过需要电子基础
提醒“这个实验有一定的危险程度,请注意安全”
如果想做的话发邮件[email protected]细聊
4. LTC变压器是载调压变压器么
是载调压变压器。
变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。按用途可以分为:电力变压器和特殊变压器(电炉变、整流变、工频试验变压器、调压器、矿用变、音频变压器、中频变压器、高频变压器、冲击变压器、仪用变压器、电子变压器、电抗器、互感器等)。电路符号常用T当作编号的开头.例: T01, T201等。
5. 小米充电宝按两下什么模式
小米无线充电宝外观和参数
纯白外壳加醒目的10000毫安支持无线充电字样和橙色小米Logo,告诉大家米家商店的东西又多了一个。包装背面有相关的产品信息,还多了一个防伪验证条。什么时候小米也需要防伪了,本来价格就不高,还要模仿小米的制造用料和外观,仿冒者真的会有利润么?
拿出本体,配件很简单:说明书和一根短短的充电线就是他的全部了。
全新的充电器USB-A和type-c口这里有封条保护,防止灰尘进入。
无线充电面,有一个电力标记,代表了感应线圈的位置。这面贴心的使用了亲肤涂层。不用担心铝合金的小米充电宝外壳刮伤手机,同时也增加了摩擦力,手机放在上面不容易滑掉。
充电宝的一侧标明了其参数
输入可以做到5V*3A/9V*2A/12V*1.5A,最高18W输入。输出功率是无线10W,有线A和C口都是最高18W,属于快充级别了。支持苹果的2.4A模式,也能用LTC的线进行18W快充。
撕掉黑色的遮羞布,露出来的是A+C两个口和指示灯按键。
其中C口是双向的,可以给充电宝充电,也能当有线充电口给其他设备充电。C口A口最高都是18W,两个口都是插入自动识别开始充电,不需要按按钮。
小米无线充电器充电
无线充电需要按键,单击后会通过四个LED显示目前剩余电量,同时激活无线充电状态。快速短按两下就可以进入小电流充电给蓝牙耳机充电更加安全。
小米充电宝的无线充电还是很给力的,按照有些媒体的说法,iphone xs max是可以达到10W的无线快充的,也有称最高7.5W,但是无线快充的功率是玄学,真的有多少,我手头没有设备测试。3个小时左右就能从10%充满我觉得这速度可以接受。
无线充电的有效距离很长,大约如下图这么多,也就是隔开这点距离无线充电也不会停止。这就意味着即使拿着手机和充电宝无线充电的时候,也不会因为一点点细微的偏差让无线充电停止。
无线充电足够给力,有线充电也能快充,用普通的苹果线在C口可以进行2.4A模式最高充电功率为12W,用LTC可以用C口充电,最高功率18W。当然两者实际充满时间差别不大,快速充电只作用于最初的20分钟左右,个人觉得花一百多买授权的LTC意义不大。
充电宝自身充电也很快,在使用支持PD的快充头给小米充电宝充电的时候,可以顺利进入9w*2A的快充模式。没有具体监控整个过程,但是充满这个充电宝,大约需要6个小时左右的时间。
这次的小米充电宝除去自身不错的素质之外,最有价值的的是,平时可以把它当成一个无线充电板来使用。晚上插上快充放在床头柜充电,同时把手机放上去充电,第二天就能获得一个充满电的手机和一个充满电的充电宝
6. LTC8842运放延迟
你好,LTC8842运放延迟的原因是:用运放做放大电路输出波形失真的原因主要有:各放大级间耦合时出现饱和失真和元器件不良造成的交联失真、反馈深度不足或退耦不足造成、用变压器耦合或倒相电路输入时出现交越失真、电子元件由于平行感应和屏蔽不良、接地不良造成的信号串扰,工作电压不正常造成的门槛电压变化或电容的滤波不良造成的高频干扰等。具体是什么原因造成的,需要 专业人员去各个核实调查,才能快速地找到正确结果。
7. 交流220V电流检测电路,电流只有十几个毫安,怎么搭建电路
10几毫安已经很大了。这种情况用互感器,体积大、一致性差。建议你采用双向的光耦来检测。推荐TLP620。
8. Ltc台灯变成感应灯怎么关掉
1、Ltc台灯变成感应灯的关闭方法将感应灯上的红外感应区或着感应孔,用胶布堵上。
2、直接将Ltc台灯感应装置拆下,更换为普通的控制开关。为了避免此种情况,最好在安装感应灯时,在控制回路中串联接入一个开关或者时间继电器。这样感应灯用时可常开,不用时也可以轻松关闭。
9. 模拟式称重传感器如何怎样接入电脑
买个专用的模数转换模块,带集成或分立232或485的模块,还有要通讯协议。
10. 采样电阻的应用场合有哪些该怎么选型呢
采样电阻基于磁场的检测方法(以电流互感器和霍尔传感器为代表)采样电阻具有良好的隔离和较低的功率损耗等优点,因此主要在驱动技术和大电流领域被电子工程师们选用,但它的缺点是体积较大,补偿特性、线性以及温度特性不理想。对于电流检测的原理,目前主要有两种的检测:基于磁场的检测方法和基于分流器的检测方法。 由于小体积的高精度低阻值采样电阻器的实用化,以及数据采集和处理器性能的大幅度提升,已经导致传统的基于分流器的电流检测方法的技术革新,并使新的应用成为可能。
然而,电路板上的取样端子和采样电阻组成了一个环状结构,为了避免其间因电流产生的磁场和外围磁场而形成的感应电压,需要特别强调要使取样的信号线形成的区域越小越好,最理想的是微带线设计。采样电阻又电流检测电阻,也有人翻译为电流传感电阻器,英语翻译为current sensing resistor,采样电阻阻值一般小于1欧姆,我见过的最小阻值是0.1毫欧,常用用的有0.025欧,0.028欧,0.05欧等。原理:将采样电阻串入电路中,根据欧姆定律,当被测电流流过电阻时,电阻两端的电压与电流成正比,转换为电压型号进行测量。
低电感:在当今的很多应用中需要测量和控制高频电流,分流器的寄生电感参数也得到了大幅改善。表面贴装电阻器的特殊的低电感平面设计和合金材料的抗磁特性,金属底板,以及四引线连接都有效降低了电阻器的寄生电感。
采样电阻
采样电阻热电动势,当温度轻微升高或者降低时,在不同材料的接触面上会产生热电势,这种效应对低阻值电阻的影响非常重要,尽管通常情况下热电势数值非常小,但微伏级的热电势能够严重地影响测量结果。长期稳定性:对于任何传感器来说,长期稳定性都非常重要。甚至在使用了一些年后,人们都希望还能维持早期的精度。这就意味着电阻材料在寿命周期内一定要抗腐蚀,并且合金成分不能改变。端子连接:在低阻值电阻中,端子的阻值和温度系数的影响往往是不能忽略的。在PCB layout也要注意采样电阻的走线不能太长,太细。我在使用linear LTC4100做充电管理时,版PCB由于忽略了这一点,走线有点长,导致充电电流无法达到我的设定值,后来查了很久才发现是这个问题。
采样电阻应用场合:电源管理(如电源监控)。开关电源SMPS(DC-DC, 充电管理,电源适配器)。如Linear的4100系列锂电池充电电路,采用采样电阻控制充电电流。
选型:常见生产厂家:Vishay, IRC,Ohmite, Bourns, 国产的主要有国巨等。PS:电子元件技术网的选型工具也比较好用。采样电阻都是精密电阻,精度都在1%以内,更好要求时采用0.05%,甚至0.01%,功率有0.25W,0.5W,1W等。 阻值:和普通电阻一样,标准阻值为非连续。表示方法:毫欧电阻可表示为: R001 = 0.001R。25毫欧电阻可表示为: R025 = 0.025R。100毫欧电阻可表示为: R100 = 0.1R。封装:常见的封装有1206/2010/2512。 温度系数:是锰镍铜合金电阻的典型温度特性曲线,温度系数TCR单位为ppm/K,在20或25℃ 时,TCR=[R(T)-R(T0)]/R(T0) ×(T-T0),对于温度系数的定义,制造商标明温度的上限是必要的,举例说明在+20 -+60℃的温度范围内,测量系统经常选用TCR为几百个ppm/K 的低阻值的厚膜电阻器,比如TCR 为200 ppm/K的电阻器的温度特性,即使在如此小的范围内,+50℃的温度变化就足以导致阻值变化超过1%。