eth智能合约函数调用
⑴ 以太坊的智能合约是什么意思
以太坊智能合约是指,部署在以太坊上的智能合约,是一段程序,运行在以太坊的虚拟机EVM中,程序可以按照事先约定的某种规则自动执行操作,执行合约的条款。
同时,智能合约对接收到的信息进行反应,它既可以接收和储存价值,也可以向外发送信息和价值。
介绍
以太坊创始人V神指出过,以太坊智能合约中的“‘合约’不应被理解为需要执行或遵守的东西,而应看成是存在于以太坊执行环境中的‘自治代理’(autonomous agents),它拥有自己的以太坊账户,它们收到交易信息后就相当于被捅了一下,然后自动执行一段代码。”
智能合约可以调用其它的智能合约,这就是开启创立自治代理的能力,代理可以自己进行交易。在区块链上,我们存储的信息都是“状态”,而智能合约就是它用于状态转换的方式。
⑵ 006:MPT与RLP|《ETH原理与智能合约开发》笔记
待字闺中开发了一门区块链方面的课程:《深入浅出ETH原理与智能合约开发》,马良老师讲授。此文集记录我的学习笔记。
课程共8节课。其中,前四课讲ETH原理,后四课讲智能合约。
第二课分为三部分:
这篇文章是第二课第二部分的学习笔记:MPT与RLP。
MPT,Merkle Patricia Tree,结合了Merkle Tree(默克尔树)和 Patricia Tree(帕特里夏树)的一种数据结构。
RLP,Recursive Length Prefix,一种编码方法。
这是两个非常重要的数据结构,在以太坊的区块和交易中都有用到。
先分别介绍一下Merkle Tree 和 Patricia Tree。
Merkle Tree 和 Patricia Tree Merkle Tree 和 Patricia Tree
默克尔树的解释:对每一个交易计算其散列值(Hash),再对两个散列值求他们的散列值。如果是奇数个,就把最后一个重复一次。最后得到的一个散列值就是默克尔树根的值。如图,交易1、1、2、3的散列值分别是HASH0、HASH1、HASH2、HASH3。HASH0和HASH1结合在一起计算散列值得HASH01,HASH2和HASH3结合在一起计算散列值得HASH23,接下来HASH01、HASH23结合在一起,计算散列值得HASH0123。
采用默克尔树的好处是可以方便的判断一个交易是否在区块中。
Patricia Tree,可称为压缩前缀树。如上图右半部分。相同的前缀在同一分支中,后面一同的部分分叉出来,如test和toast,都有相同的t,est和oast在两个分支中。
这个结构的好处是节省空间,因为每一级的键值可以是多个字符。
了解了Merkle Tree 和 Patricia Tree后,再来看这两者混合后的产物——MPT。
这里的原理知识单独来看不易理解,和具体的例子结合起来才更容易理解,此处先放上课件截图。在后面的例子中再做说明。
Merkle Patricia Tree 规格 Merkle Patricia Tree 规格
在MPT中,还涉及到三个小的编码标准。主要规则如图。下面结合两个例子说明一下。
三个编码标准 三个编码标准
HEX编码的例子:从ASCII码表中可以查出,b的十六进制编码为62,o的十六进制编码为6F,F在十六进制中就是15的意思。因为这是个叶子节点,最后加上0x10表示结束,也就是16。所以最后的编码为[6 2 6 15 6 2 16]
HEX-Prefix编码的例子:[6 2 6 15 6 2 16],将其最后的0x10去掉,[6 2 6 15 6 2]。前面补一个四元组,其中(倒数)第0位是区分奇偶信息的,[6 2 6 15 6 2]是偶数位,第0位是0;第1位是区分节点类型的,这是叶子节点,第1位是1。所以这个四元组就是0010是2。“如果输入key的长度是偶数则再添加一个四元组0x0在flag四元组之后。”,所以,最终的前缀是0x20。本例最终的结果,[32 98 111 98],即[0x20, 0x62, 0x6F, 0x62]
下面是综合性的例子,通过它可以很方便地理解前面的理论知识。值得多看几篇,仔细休会。
初始的key-value对为:
其中,<>中的数据为key的16进制编码。
MPT.jpg MPT.jpg
因为4组数据都有公共的6,所以这个节点的值为6,长度为1,奇数;节点类型:扩展节点;所以前缀就是0001,即1。
这是个扩展节点,它的值是一个Hashvalue,它指向一个分支节点。Hashvalue,具体指的是分支节点RLP编码的结果的散列值。(RLP见下小节)
分支节点。上面4组数据的第2位是4和8两种情况。在4的位置上存的是下面的扩展节点的散列值,在8的位置上存的是下面的叶子节点的散列值。
叶子节点。以68开头的只有一个了。所以这个节点上的四元组就是6f727365了。它是偶数位。前缀是0x20(同前文HEX-Prefix编码的例子)。这个叶子节点的value值为'stallion'。
扩展节点。在64之后,公共的部分是6f,这个扩展节点的key即为6f,前缀为0000,即00。这个扩展节点的value存放的是一个hashvalue,指向下一个节点,一个分支节点。
分支节点。646f已经表达完,这个节点的value值就是646f对应的值,'verb'。
除此之外,646f之后就是6,所以在这个分支节点的6位置上有一个散列值,指向下一个节点。
扩展节点。在646f6之后,公共的部分是7,其长度为1,奇数。所以前缀为0001。这个节点的value是一个散列值,指向下一个节点。
分支节点。646f67已经表达完,这个节点的value值就是646f67对应的值,'puppy'。
除此之外,646f67之后就是6,所以在这个分支节点的6位置上有一个散列值,指向下一个节点。
叶子节点。key为5,value为'coin'。长度为1,奇数,前缀0011,即3。
整个分析过程结束。可结合上图和前文的理论多加复习。
这小节也是理论性较强,通过例子可以方便理解。先放上课件,再根据我的理解举更多的例子。同样,学习方法也是理论和例子配合学习。其中,list的例子在下篇文章的上机实验部分再列举。 RLP的编码标准 RLP的编码标准 再举几个例子 再举几个例子
⑶ java中怎么样调用eth的智能合约
一般来说,部署智能合约的步骤为:
启动一个以太坊节点 (例如geth或者testrpc)。
使用solc编译智能合约。 => 获得二进制代码。
将编译好的合约部署到网络。(这一步会消耗以太币,还需要使用你的节点的默认地址或者指定地址来给合约签名。) => 获得合约的区块链地址和ABI(合约接口的JSON表示,包括变量,事件和可以调用的方法)。(译注:作者在这里把ABI与合约接口弄混了。ABI是合约接口的二进制表示。)
用web3.js提供的JavaScript API来调用合约。(根据调用的类型有可能会消耗以太币。)
⑷ iOS应用程序如何调用以太坊智能合约
以太坊智能合约有各种各样的用例,但到目前为止,从你的iOS应用程序中调用它们非常困难。不过如果使用 以太坊iOS开发套件 和 EtherKit ,这种情况会改善很多,你可以立即开始使用。在本教程结束时,你将能够调用其ABI(应用程序二进制接口)中定义的任何公共合约函数。
对于这个项目,我们将使用Xcode 10.0和ContractCodegen 0.1。我们还建议使用iOS MVVM项目模板,但为了使本教程简单,我们将使用正常的iOS项目结构。
⑸ 011:Ethash算法|《ETH原理与智能合约开发》笔记
待字闺中开发了一门区块链方面的课程:《深入浅出ETH原理与智能合约开发》,马良老师讲授。此文集记录我的学习笔记。
课程共8节课。其中,前四课讲ETH原理,后四课讲智能合约。
第四课分为三部分:
这篇文章是第四课第一部分的学习笔记:Ethash算法。
这节课介绍的是以太坊非常核心的挖矿算法。
在介绍Ethash算法之前,先讲一些背景知识。其实区块链技术主要是解决一个共识的问题,而共识是一个层次很丰富的概念,这里把范畴缩小,只讨论区块链中的共识。
什么是共识?
在区块链中,共识是指哪个节点有记账权。网络中有多个节点,理论上都有记账权,首先面临的问题就是,到底谁来记帐。另一个问题,交易一定是有顺序的,即谁在前,前在后。这样可以解决双花问题。区块链中的共识机制就是解决这两个问题,谁记帐和交易的顺序。
什么是工作量证明算法
为了决定众多节点中谁来记帐,可以有多种方案。其中,工作量证明就让节点去算一个哈希值,满足难度目标值的胜出。这个过程只能通过枚举计算,谁算的快,谁获胜的概率大。收益跟节点的工作量有关,这就是工作量证明算法。
为什么要引入工作量证明算法?
Hash Cash 由Adam Back 在1997年发表,中本聪首次在比特币中应用来解决共识问题。
它最初用来解决垃圾邮件问题。
其主要设计思想是通过暴力搜索,找到一种Block头部组合(通过调整nonce)使得嵌套的SHA256单向散列值输出小于一个特定的值(Target)。
这个算法是计算密集型算法,一开始从CPU挖矿,转而为GPU,转而为FPGA,转而为ASIC,从而使得算力变得非常集中。
算力集中就会带来一个问题,若有一个矿池的算力达到51%,则它就会有作恶的风险。这是比特币等使用工作量证明算法的系统的弊端。而以太坊则吸取了这个教训,进行了一些改进,诞生了Ethash算法。
Ethash算法吸取了比特币的教训,专门设计了非常不利用计算的模型,它采用了I/O密集的模型,I/O慢,计算再快也没用。这样,对专用集成电路则不是那么有效。
该算法对GPU友好。一是考虑如果只支持CPU,担心易被木马攻击;二是现在的显存都很大。
轻型客户端的算法不适于挖矿,易于验证;快速启动
算法中,主要依赖于Keccake256 。
数据源除了传统的Block头部,还引入了随机数阵列DAG(有向非循环图)(Vitalik提出)
种子值很小。根据种子值生成缓存值,缓存层的初始值为16M,每个世代增加128K。
在缓存层之下是矿工使用的数据值,数据层的初始值是1G,每个世代增加8M。整个数据层的大小是128Bytes的素数倍。
框架主要分为两个部分,一是DAG的生成,二是用Hashimoto来计算最终的结果。
DAG分为三个层次,种子层,缓存层,数据层。三个层次是逐渐增大的。
种子层很小,依赖上个世代的种子层。
缓存层的第一个数据是根据种子层生成的,后面的根据前面的一个来生成,它是一个串行化的过程。其初始大小是16M,每个世代增加128K。每个元素64字节。
数据层就是要用到的数据,其初始大小1G,现在约2个G,每个元素128字节。数据层的元素依赖缓存层的256个元素。
整个流程是内存密集型。
首先是头部信息和随机数结合在一起,做一个Keccak运算,获得初始的单向散列值Mix[0],128字节。然后,通过另外一个函数,映射到DAG上,获取一个值,再与Mix[0]混合得到Mix[1],如此循环64次,得到Mix[64],128字节。
接下来经过后处理过程,得到 mix final 值,32字节。(这个值在前面两个小节《 009:GHOST协议 》、《 010:搭建测试网络 》都出现过)
再经过计算,得出结果。把它和目标值相比较,小于则挖矿成功。
难度值大,目标值小,就越难(前面需要的 0 越多)。
这个过程也是挖矿难,验证容易。
为防止矿机,mix function函数也有更新过。
难度公式见课件截图。
根据上一个区块的难度,来推算下一个。
从公式看出,难度由三部分组成,首先是上一区块的难度,然后是线性部分,最后是非线性部分。
非线性部分也叫难度炸弹,在过了一个特定的时间节点后,难度是指数上升。如此设计,其背后的目的是,在以太坊的项目周期中,在大都会版本后的下一个版本中,要转换共识,由POW变为POW、POS混合型的协议。基金会的意思可能是使得挖矿变得没意思。
难度曲线图显示,2017年10月,难度有一个大的下降,奖励也由5个变为3个。
本节主要介绍了Ethash算法,不足之处,请批评指正。
⑹ 以太国际空间谁知道怎么玩。EIS币怎么交易
现在我们大家都很关注关于以太坊方面的问题,那么关于以太币怎么交易?我想我们大家应该会很想了解一些内容,那么下面就让我们小编在这里就来为大家好好的介绍一下很多内容关于以太币怎么交易?以太坊的交易最直观解释:从外部账户发送到区块链上的另一个账户的消息和签名的数据包。
包含如下内容:
发送者的签名
接收的地址
转移的数字货币数量等内容
以太坊上的交易都是需要支付费用,和比特币以比特币来支付一定的交易费用不同,以太坊上固定了这个环节,那么这个间接理解是以太坊的一种安全防范错误,防止了大量的无意义的交易,保证一定的安全性,特别是智能合约的创建、执行、调用都需要消耗费用,那么也保证了整个系统的稳定性,防止了一些链上无意义的恶意行为。
交易手续费
以太坊的核心是EVM,以太坊虚拟机,那么在EVM中执行的字节码都是要支付费用。也就是经常看到的Gas、Gas limit、Gas Price这几个概念。
Gas:字面理解就是汽油,以太坊和日常的汽车一样需要Gas才能运行。Gas是一笔交易过程中计算消耗的基本单位。有一个列表可以直观看到在以太坊中操作的Gas消耗量:
操作Gas消耗具体内容
step1执行周期的默认费用。
stop0终止操作是免费的。
suicide0智能合约账户的内部数据存储空间,当合约账户调用suicide()方法时,该值将被置为null。
sha320加解密
sload20在固定的存储器中去获取
sstore100输入到固定的存储器中
balance20账户余额
create100创建合约
call20初始化一个只读调用
memory1扩充内存额外支付的费用
txdata5交易过程中数据或者编码的每一个字节的消耗
transaction500交易费用
contract creation53000homestead中目前从21000调整到53000
所以有些公司或者个人觉得区块链技术去中介化,不需要中心服务器,这种开发模式是比较便宜的,但是事实上区块链的开发不比之前的那些传统软件开发来的便宜。
Gas Price:字面理解汽油价格,这个就像你去加油站,95#汽油今天是什么价格。一个Gas Price就是单价,那么你的交易费用=Gas*Gas Price,然后以以太币来ether来支出。当然你觉得我不想支付费用,你可以设置Gas Price为0,但是选择权在矿工手中,矿工有权选择收纳交易和收取费用,那么最简单的想想很难让一个矿工去接收一个价格很低的交易吧。另外提一句,以太坊默认的Gas Price是1wei。
Gas Limit:字面理解就是Gas的限制,限制是必要的,没有限制就没有约束。这个Gas Limit是有两个意思的。首先针对单个交易,那么这个表示交易的发起者他愿意支付最多是多少Gas,这个交易发起者在发起交易的时候需要设置好。还有一个是针对区块的Gas Limit,一个单独的区块也有Gas的限制。
假设几个场景来说明Gas的使用:
用户设置Gas Limit,那么在交易过程中,如果你的实际消耗的Gas used
用户设置Gas Limit,那么交易过程中,如果你的实际消耗的Gas used > Gas Limit,那么矿工肯定发现你的Gas不足,这个交易就无法执行完成,这个之后会回滚到执行之前的状态,这个时候矿工会收取Gas Price*Gas Limit。
区块的Gas Limit,区块中有一个Gas上限,收纳的交易会出现不同的用户指定的Gas Limit。那么矿工就会根据区块限制的Gas Limit来选择,“合理”选择打包交易。
具体交易
以太坊上交易可以是简单的以太币的转移,同时也可以是智能合约的代码消息。列个表格看下交易的具体内容:
代码内容
from交易发起者的地址、不能为空,源头都没有不合理。
to交易接收者的地址(这个可以为空,空的时候就表示是一个合约的创建)
value转移的以太币数量
data数据字段。这个字段存在的时候表示的是,交易是一个创建或者是一个调用智能合约的交易
Gas Limit字面理解就是Gas的限制,限制是必要的,没有限制就没有约束。这个Gas Limit是有两个意思的。首先针对单个交易,那么这个表示交易的发起者他愿意支付最多是多少Gas,这个交易发起者在发起交易的时候需要设置好。还有一个是针对区块的Gas Limit,一个单独的区块也有Gas的限制。
Gas Price一个Gas Price就是单价,那么你的交易费用=Gas*Gas Price,然后以以太币来ether来支出。以太坊默认的Gas Price是1wei。
nonce用于区别用户发出交易的标识。
hash交易ID,是由上述的信息生成的一个hash值
r、s、v交易签名的三部分,交易发起者的私钥对hash签名生成。
交易分三种类型
转账:简单明了的以太坊上的以太币的转移,就和比特币类似,A向B转移一定数量的以太币。这种交易包含:交易发起者、接收者、value的数量,其余类似Gas Limit、hash、nonce都会默认生成。所以你会看到一段代码:
web3.eth.sendTransaction({ from: "交易发起者地址", to:“交易接收者地址”, value: 数量});
智能合约创建:创建智能合约就是把智能合约部署到区块链上,那么这个时候to是一个空的字段。data字段则是初始化合约的代码。所以看到代码:
web3.eth.sendTransaction({ from: "交易发起者地址", data: "contract binary code"});
智能合约执行:合约创建部署在区块链上,那么执行就是会加上to字段到要智能合约执行的地址,然后data字段来指定调用的方法和参数的传递,所以看到代码:
web3.eth.sendTransaction({ from: "交易发起者地址", to:“合约执行者地址”, data:“调用的方法和参数的传递”});
以上大致就是交易的类型。
交易的确认
和比特币一样,以太坊的交易需要后续区块确认后,节点同步后、才能确认。简单理解就是多挖出一些区块来,通过验证后这一笔交易才算确认,以太坊时常会出现拥堵的情况,所以有时候需要等待确认。
转账、合约交易流转
首先交易发起者A发起一笔转账交易,那么发送的格式如下:
代码具体内容
from交易发起者的地址
to交易接收者的地址
value转移的以太币数量
GasGas的量
Gas PriceGas的单价
data发送给接收者的消息
nonce交易编号
节点验证:以太坊网络中会有节点收到A发送出来的消息,那么会去检查这个消息格式时候有效,然后计算Gas Limit。这个时候回去验证A的以太坊余额,如果余额不足,那么就返回错误,不予处理。一旦A发送的消息通过了节点的验证,那么节点就会把这个交易放到交易存储池中。并广播到区块链网络。
矿工验证:那么写入区块链必须要矿工打包,矿工在接收到A发出的交易,会和其他交易一块打包,普通转账交易打包即可,那么合约调用的交易则需要在矿工本地的EVM上去执行调用的合约代码,代码执行过程中检查Gas的消耗。一旦Gas消耗完了,那么就回滚,如果Gas足够那么返回多余的Gas。并广播到区块链网络。
其余节点:重复节点验证步骤,然后合约也会在本地EVM上执行验证。通过验证后同步区块链。
首先还是发起者A发起一个创建智能合约的交易请求。格式如下:
代码具体内容
from交易发起者的地址
to0
value转移的以太币数量
GasGas的量
Gas PriceGas的单价
data合约代码
nonce交易编号
节点验证:
以太坊网络中会有节点收到A发送出来的消息,检查交易是否有效,格式是否正确,验证交易签名。计算Gas,确定下发起者的地址,然后查询A账户以太币的余额。如果余额不足,那么就返回错误,不予处理。一旦A发送的消息通过了节点的验证,那么节点就会把这个交易放到交易存储池中。并广播到区块链网络。
矿工验证:
矿工将交易打包,那么会根据交易费用和合约代码,来创建合约账户,在账户的空间中部署合约。这里说下合约地址(智能合约账户的地址是有发起者的地址和交易的随机数作为输入,然后通过加密算法生成)。交易确认后会把智能合约的地址返回给A。且广播到区块链网络。
其余节点:
重复节点验证步骤,验证区块,在节点的内存池中更新A的智能合约交易,同步区块链,且智能合约部署在自己本地的区块链中。
⑺ java中怎么样调用eth的智能合约
一般来说,部署智能合约的步骤为:
1启动一个以太坊节点 (例如geth或者testrpc)。
2使用solc编译智能合约。 => 获得二进制代码。
3将编译好的合约部署到网络。(这一步会消耗以太币,还需要使用你的节点的默认地址或者指定地址来给合约签名。) => 获得合约的区块链地址和ABI(合约接口的JSON表示,包括变量,事件和可以调用的方法)。(译注:作者在这里把ABI与合约接口弄混了。ABI是合约接口的二进制表示。)
4用web3.js提供的JavaScript API来调用合约。(根据调用的类型有可能会消耗以太币。)
⑻ 以太坊合约中一个合约是否可以调用另外一个合约
可以的,参考合约之间的交互。数字货币交易平台币汇。比如我正试图从另一个工厂合约中签智能合约,然后重新部署新智能合约的地址。然而,它返回的地址是交易哈希值而不是合约地址。我相信这是因为当地址被返回时合约尚未开采。当我使用Web3部署智能合约时,它似乎一直等到智能合约被部署完成后才输出合约地址。
⑼ 以太坊智能合约代码长度限制
限制为最长可达到合约的24KB大小。
以太坊智能合约包含太多函数和代码,将轻易达到合约24KB大小的最大限制,一些合约标准需要许多功能,那对于这些大的合约来说,这是一个大的问题。
以太坊智能合约是一段程序,部署在以太坊上的智能合约,运行在以太坊的虚拟机EVM中,程序可以按照事先约定的某种规则自动执行操作,执行合约的条款。
⑽ 智能合约处理失败
调用这个合约时,没有匹配上任何一个函数。那么,就会调用默认的_allback_5焙显际盏_ther时(没有任何其它数据),这个函数也会被执行。
一个智能合约中,可以有一个没有函数名,没有参数也没有返回值的函数,也就是 fallback 函数。一个没有定义 fallback 函数的合约,如果接收ether,会触发异常,并返还ether(solidity v0.4.0开始)。所以合约要接收ether,必须实现回退函数。
智能合约(英语:Smart contract )是一种旨在以信息化方式传播、验证或执行合同的计算机协议 。智能合约允许在没有第三方的情况下进行可信交易,这些交易可追踪且不可逆转。