eth智能合约交互
A. 以太坊的智能合约
智能合约是运行在计算机里面的,用于保证让参与方执行承诺的代码,般情况下,普通合约上记录了甲方与乙方各方面的关系条款,并通常是通过法律强制执行或保护的,而“智能合约”则是用密码或密钥来执行关系。以更加直接的角度来理解的话,即“智能合约”的程序内容将同-开始大家一起设定好的那样百分百执行,并且零差错。
举个例子,以太坊用户可以使用智能合约在特定日期向朋友发送10个以太币。在这种情况下,用户可以操作创建一个合约,然后将程序推人该合约中进行特殊计算,以便它能够执行所需的命令。而以太坊就是专门把精力集中在这件事上的这么一个平台。
比特币是第一个支持“智能契约”的资源币种,因为网络的价值在于把价值或数据从一个点或人转移到另一个点或人身上。节点网络只在满足某些条件时才会进行验证,但是,比特币仅限于货币用例。相反,以大坊取代了比特币那种带有不小限制性的编程语言,取而代之的是一种允许开发人员编写自己程序的语言。以太坊允许开发人员编写他们自己的“智能契约”,即“自主代理”或“自治代理”,正如ETH白皮书所称的那样。该编程语言是“图灵完备”语言,这意味着它支持一组更广泛的计算指令。智能合约能做些什么呢?
1.“多签名”账户功能,只有在一定比例的人同意时才能使用资金。这个功能经常用在与众筹或募捐类似的活动中。
2.管理用户之间所签订的协议。例如,一方从另一方购买保险服务3.为其他合同提供实用程序。
4.存储有关应用程序的信息,如“域注册信息”或“会员信息记录”。概念有时候比较晦涩,我们举一个募捐的智能合约的例子来帮助理解:假设我们想向全网用户发起募捐,那就可以先定义一个智能账户,它有三个状态:当前募捐总量,捐款目标和被捐赠人的地址,然后给它定义两个函数:接收募捐函数和捐款函数。
接收募捐函数每次收到发过来的转账请求,先核对下发送者是否有足够多的钱(EVM会提供发送请求者的地址,程序可以通过地址获取到该人当前的区块链财务状况),然后每次募捐丽数调用时,都会比较下当前募捐总量跟捐款目标的比较,如果超过目标,就把当前收到的捐款全部发送到指定的被捐款人地址,否则的话,就只更新当前募捐总量状态值。
捐款函数将所有捐款发送到保存的被捐赠人地址,并且将当前捐款总量清零。每一个想要募捐的人,用自己的ETH地址向该智能账户发起一笔转账,并且指明了要调用接受其募捐函数。于是我们就有一个募捐智能合约了,人们可以往里面捐款,达到限额后钱会自动发送到指定账户,全世界的矿工都在为这个合约进行计算和担保,不再需要人去盯着看有没有被挪用,这就是智能合约的魅力所在。
B. 用Go来做以太坊开发④智能合约
在这个章节中我们会介绍如何用Go来编译,部署,写入和读取智能合约。
与智能合约交互,我们要先生成相应智能合约的应用二进制接口ABI(application binary interface),并把ABI编译成我们可以在Go应用中调用的格式。
第一步是安装 Solidity编译器 ( solc ).
Solc 在Ubuntu上有snapcraft包。
Solc在macOS上有Homebrew的包。
其他的平台或者从源码编译的教程请查阅官方solidity文档 install guide .
我们还得安装一个叫 abigen 的工具,来从solidity智能合约生成ABI。
假设您已经在计算机上设置了Go,只需运行以下命令即可安装 abigen 工具。
我们将创建一个简单的智能合约来测试。 学习更复杂的智能合约,或者智能合约的开发的内容则超出了本书的范围。 我强烈建议您查看 truffle framework 来学习开发和测试智能合约。
这里只是一个简单的合约,就是一个键/值存储,只有一个外部方法来设置任何人的键/值对。 我们还在设置值后添加了要发出的事件。
虽然这个智能合约很简单,但它将适用于这个例子。
现在我们可以从一个solidity文件生成ABI。
它会将其写入名为“Store_sol_Store.abi”的文件中
现在让我们用 abigen 将ABI转换为我们可以导入的Go文件。 这个新文件将包含我们可以用来与Go应用程序中的智能合约进行交互的所有可用方法。
为了从Go部署智能合约,我们还需要将solidity智能合约编译为EVM字节码。 EVM字节码将在事务的数据字段中发送。 在Go文件上生成部署方法需要bin文件。
现在我们编译Go合约文件,其中包括deploy方法,因为我们包含了bin文件。
在接下来的课程中,我们将学习如何部署智能合约,然后与之交互。
Commands
Store.sol
solc version used for these examples
如果你还没看之前的章节,请先学习 编译智能合约的章节 因为这节内容,需要先了解如何将智能合约编译为Go文件。
假设你已经导入从 abigen 生成的新创建的Go包文件,并设置ethclient,加载您的私钥,下一步是创建一个有配置密匙的交易发送器(tansactor)。 首先从go-ethereum导入 accounts/abi/bind 包,然后调用传入私钥的 NewKeyedTransactor 。 然后设置通常的属性,如nonce,燃气价格,燃气上线限制和ETH值。
如果你还记得上个章节的内容, 我们创建了一个非常简单的“Store”合约,用于设置和存储键/值对。 生成的Go合约文件提供了部署方法。 部署方法名称始终以单词 Deploy 开头,后跟合约名称,在本例中为 Store 。
deploy函数接受有密匙的事务处理器,ethclient,以及智能合约构造函数可能接受的任何输入参数。我们测试的智能合约接受一个版本号的字符串参数。 此函数将返回新部署的合约地址,事务对象,我们可以交互的合约实例,还有错误(如果有)。
就这么简单:)你可以用事务哈希来在Etherscan上查询合约的部署状态: https://rinkeby.etherscan.io/tx/
Commands
Store.sol
contract_deploy.go
solc version used for these examples
这写章节需要了解如何将智能合约的ABI编译成Go的合约文件。如果你还没看, 前先读 上一个章节 。
一旦使用 abigen 工具将智能合约的ABI编译为Go包,下一步就是调用“New”方法,其格式为“New<contractname style="box-sizing: border-box; font-size: 16px; -ms-text-size-adjust: auto; -webkit-tap-highlight-color: transparent;">”,所以在我们的例子中如果你 回想一下它将是 NewStore 。 此初始化方法接收智能合约的地址,并返回可以开始与之交互的合约实例。</contractname>
Commands
Store.sol
contract_load.go
solc version used for these examples
这写章节需要了解如何将智能合约的ABI编译成Go的合约文件。如果你还没看, 前先读 上一个章节 。
在上个章节我们学习了如何在Go应用程序中初始化合约实例。 现在我们将使用新合约实例提供的方法来阅读智能合约。 如果你还记得我们在部署过程中设置的合约中有一个名为 version 的全局变量。 因为它是公开的,这意味着它们将成为我们自动创建的getter函数。 常量和view函数也接受 bind.CallOpts 作为第一个参数。了解可用的具体选项要看相应类的 文档 一般情况下我们可以用 nil 。
Commands
Store.sol
contract_read.go
solc version used for these examples
这写章节需要了解如何将智能合约的ABI编译成Go的合约文件。如果你还没看, 前先读 上一个章节 。
写入智能合约需要我们用私钥来对交易事务进行签名。
我们还需要先查到nonce和燃气价格。
接下来,我们创建一个新的keyed transactor,它接收私钥。
然后我们需要设置keyed transactor的标准交易选项。
现在我们加载一个智能合约的实例。如果你还记得 上个章节 我们创建一个名为 Store 的合约,并使用 abigen 工具生成一个Go文件。 要初始化它,我们只需调用合约包的 New 方法,并提供智能合约地址和ethclient,它返回我们可以使用的合约实例。
我们创建的智能合约有一个名为 SetItem 的外部方法,它接受solidity“bytes32”格式的两个参数(key,value)。 这意味着Go合约包要求我们传递一个长度为32个字节的字节数组。 调用 SetItem 方法需要我们传递我们之前创建的 auth 对象(keyed transactor)。 在幕后,此方法将使用它的参数对此函数调用进行编码,将其设置为事务的 data 属性,并使用私钥对其进行签名。 结果将是一个已签名的事务对象。
现在我就可以看到交易已经成功被发送到了以太坊网络了: https://rinkeby.etherscan.io/tx/
要验证键/值是否已设置,我们可以读取智能合约中的值。
搞定!
Commands
Store.sol
contract_write.go
solc version used for these examples
有时您需要读取已部署的智能合约的字节码。 由于所有智能合约字节码都存在于区块链中,因此我们可以轻松获取它。
首先设置客户端和要读取的字节码的智能合约地址。
现在你需要调用客户端的 codeAt 方法。 codeAt 方法接受智能合约地址和可选的块编号,并以字节格式返回字节码。
你也可以在etherscan上查询16进制格式的字节码 https://rinkeby.etherscan.io/address/#code
contract_bytecode.go
首先创建一个ERC20智能合约interface。 这只是与您可以调用的函数的函数定义的契约。
然后将interface智能合约编译为JSON ABI,并使用 abigen 从ABI创建Go包。
假设我们已经像往常一样设置了以太坊客户端,我们现在可以将新的 token 包导入我们的应用程序并实例化它。这个例子里我们用 Golem 代币的地址.
我们现在可以调用任何ERC20的方法。 例如,我们可以查询用户的代币余额。
我们还可以读ERC20智能合约的公共变量。
我们可以做一些简单的数学运算将余额转换为可读的十进制格式。
同样的信息也可以在etherscan上查询: https://etherscan.io/token/?a=
Commands
erc20.sol
contract_read_erc20.go
solc version used for these examples
C. 以太坊合约中一个合约是否可以调用另外一个合约
可以的,参考合约之间的交互。数字货币交易平台币汇。比如我正试图从另一个工厂合约中签智能合约,然后重新部署新智能合约的地址。然而,它返回的地址是交易哈希值而不是合约地址。我相信这是因为当地址被返回时合约尚未开采。当我使用Web3部署智能合约时,它似乎一直等到智能合约被部署完成后才输出合约地址。
D. 以太坊智能合约是什么
以太坊是一个分布式的计算平台。它会生成一个名为Ether的加密货币。程序员可以在以太坊区块链上写下“智能合约”,这些以太坊智能合约会根据代码自动执行。
以太坊是什么?
以太坊经常与比特币相提并论,但情况却有所不同。比特币是一种加密货币和分布式支付网络,允许比特币在用户之间转移。
相关:什么是比特币?它是如何工作的?
以太坊项目有更大的目标。正如Ethereum网站所说,“以太坊是一个运行智能合约的分布式平台”。这些智能合约运行在“以太坊虚拟机”上,这是一个由所有运行以太网节点的设备组成的分布式计算网络。
“分布式平台”部分意味着任何人都可以建立并运行以太坊节点,就像任何人都可以运行比特币节点一样。任何想要在节点上运行“智能合约”的人都必须向Ether中的这些节点的运营商付款,这是一个与以太坊相关的加密货币。因此,运行以太网节点的人提供计算能力,并在以太网中获得支付,这与运行比特币节点的人提供哈希能力并以比特币支付的方式类似。
换句话说,虽然比特币仅仅是一个区块链和支付网络,但以太坊是一个分布式计算网络,其区块链可以用于许多其他事情。以太坊白皮书中提供了详细信息。
以太是什么?
以太网是与以太坊区块链相关的数字标记(或者说就是加密货币)。换句话说,以太是代币,以太坊是平台。但是,现在人们经常交替使用这些术语。例如,Coinbase允许你购买以太坊代币(Ethereum),即代表以太币代币。
这在技术上就是“altcoin”,这实际上意味着一个非比特币加密货币。和比特币一样,Ether也受到分布式区块链支持 - 在这种情况下是以太坊区块链。
想要在以太坊区块链上创建应用程序或以太坊 智能合约的开发人员需要以太网代币来支付节点来托管它,而基于以太坊的应用程序的用户可能需要以太网来支付这些应用程序中的服务费用。人们也可以在以太坊网络之外销售服务,并接受以太网支付,或者可以在交易所以现金形式出售以太币代币 - 就像比特币一样
E. 【ETH钱包开发04】web3j转账ERC-20 Token
在上一篇文章中讲解了ETH转账,这一篇讲一下ERC-20 Token转账。
【ETH钱包开发03】web3j转账ETH
1、直接用web3j的API
2、java/Android调用合约的 transfer 方法
不管用哪种方式来转账,你都需要先写一个solidity智能合约文件来创建ERC-20 Token,然后部署合约,最后才是通过客户端来调用。
注意:erc-20 token转账和eth转账的区别如下:
1、erc-20 token创建交易对象用的是这个方法 createTransaction
2、erc-20 token需要构建 Function ,它其实对应的就是erc-20 token合约中的那些方法。它的第一个参数就是ERC20中那几个方法的名称,第二个参数的话就是对应合约方法中的参数,第三个参数是和第二个参数对应的,按照我那样就行了。转账的话就是 transfer ,我们从合约的 transfer 可以看到第一个参数是收款地址,第二个参数是金额,所以 Function 这里对应起来就好。
这种方法不需要使用web3j封装的方法,而是直接调用solidity合约的方法。
步骤
1、web3j加载一个已经部署的合约
2、验证合约是否加载成功 isValid
3、如何加载合约成功,则调用合约的 transfer 方法
注意:
1、这里的 TokenERC20 是根据solidity智能合约生成的对应的Java类,用于java/Android和智能合约交互的,如果你对这里不太清楚,不妨看看我之前的一篇文章。
以太坊Web3j命令行生成Java版本的智能合约
2、如果加载合约失败,可能的一个原因是合约对应的Java类中的 BINARY 的值不对,这个值是你部署合约成功之后的bytecode,你最好检查对比一下。
我发送一笔交易,可以通过这个地址查询
https://rinkeby.etherscan.io/tx/
F. java中怎么样调用eth的智能合约
一般来说,部署智能合约的步骤为:
1启动一个以太坊节点 (例如geth或者testrpc)。
2使用solc编译智能合约。 => 获得二进制代码。
3将编译好的合约部署到网络。(这一步会消耗以太币,还需要使用你的节点的默认地址或者指定地址来给合约签名。) => 获得合约的区块链地址和ABI(合约接口的JSON表示,包括变量,事件和可以调用的方法)。(译注:作者在这里把ABI与合约接口弄混了。ABI是合约接口的二进制表示。)
4用web3.js提供的JavaScript API来调用合约。(根据调用的类型有可能会消耗以太币。)
G. 以太坊的智能合约是什么意思
以太坊智能合约是指,部署在以太坊上的智能合约,是一段程序,运行在以太坊的虚拟机EVM中,程序可以按照事先约定的某种规则自动执行操作,执行合约的条款。
同时,智能合约对接收到的信息进行反应,它既可以接收和储存价值,也可以向外发送信息和价值。
介绍
以太坊创始人V神指出过,以太坊智能合约中的“‘合约’不应被理解为需要执行或遵守的东西,而应看成是存在于以太坊执行环境中的‘自治代理’(autonomous agents),它拥有自己的以太坊账户,它们收到交易信息后就相当于被捅了一下,然后自动执行一段代码。”
智能合约可以调用其它的智能合约,这就是开启创立自治代理的能力,代理可以自己进行交易。在区块链上,我们存储的信息都是“状态”,而智能合约就是它用于状态转换的方式。
H. 什么是以太币/以太坊ETH
以太币(ETH)是以太坊(Ethereum)的一种数字代币,被视为“比特币2.0版”,采用与比特币不同的区块链技术“以太坊”(Ethereum),一个开源的有智能合约成果的民众区块链平台,由全球成千上万的计算机构成的共鸣网络。开发者们需要支付以太币(ETH)来支撑应用的运行。和其他数字货币一样,以太币可以在交易平台上进行买卖 。
温馨提示:以上解释仅供参考,不作任何建议。入市有风险,投资需谨慎。您在做任何投资之前,应确保自己完全明白该产品的投资性质和所涉及的风险,详细了解和谨慎评估产品后,再自身判断是否参与交易。
应答时间:2020-12-02,最新业务变化请以平安银行官网公布为准。
[平安银行我知道]想要知道更多?快来看“平安银行我知道”吧~
https://b.pingan.com.cn/paim/iknow/index.html
I. eth收益计算机是什么
以太币(ETH)是以太坊(Ethereum)的一种数字代币,被视为“比特币2.0版”,采用与比特币不同的区块链技术“以太坊”(Ethereum)。
一个开源的有智能合约成果的民众区块链平台,由全球成千上万的计算机构成的共鸣网络。开发者们需要支付以太币(ETH)来支撑应用的运行。和其他数字货币一样,以太币可以在交易平台上进行买卖 。
技术架构:
智能合约赋予账本可编程的特性,区块链 2.0 通过虚拟机的方式运行代码实现智能合约的功能,比如以太币的以太坊虚拟机(EVM)。同时,这一层通过在智能合约上添加能够与用户交互的前台界面,形成去中心化的应用(DAPP)。
当然,在某些技术文档中认为DAPP 应该在智能合约层之上单独为应用层,也是有一定道理,只要不影响理解即可。
以上内容参考:网络-以太币
J. 以太坊更新:Gray Glacier升级;Kiln等测试网将弃用
以太坊最新进展
** 什么是Gray Glacier? **
Gray Glacier 网络升级改变了冰河时代/难度炸弹的参数,将其向后推70万个区块,或大约100天。随着Ropsten现在转变为权益证明PoS,难度炸弹只影响以太坊主网。这意味着Gray Glacier将不会部署在任何测试网上。
以太坊主网预计将在6月29日于区块高度15,050,000进行Gray Glacier硬分叉升级,以将难度炸弹推迟大约2-3个月,因此所有用户必须尽快升级Eth1节点。以太坊客户端Geth对此发布v1.10.19版本,引入Gray Glacier硬分叉,强制进行升级。
**什么是以太坊网络升级? **
网络升级是对底层以太坊协议的改变,创建新的规则来改进系统。区块链系统的去中心化特性使得网络升级更加困难。区块链中的网络升级需要与社区以及各种以太坊客户端的开发人员进行合作和沟通,以便顺利过渡。
**网络升级期间会发生什么? **
在社区就哪些更改应该包含在升级中达成协议后,对协议的更改将写入各种以太坊客户端,如Besu、Erigon、go-ethereum和Nethermind。协议更改将在特定的区块被激活。没有升级到新规则的任何节点都将被丢弃在旧链上,旧链上仍然存在以前的规则。
**测试网关闭时间 **
Kiln、Rinkeby 和 Ropsten 测试网将弃用
以太坊有许多测试网供用户和开发人员在与主网交互之前进行测试。这些测试网允许应用程序、工具、基础设施和协议开发者在转移到主网之前,在一个低风险的环境中将更改部署到产品中(或协议本身!)。也就是说,由于测试网是全功能的区块链,它们的历史和状态会随着时间的推移而增长。这最终使它们更难运行和维护节点。由于这个原因,一些测试网会周期性地关闭。这发生在去年的Pyrmont Beacon Chain测试网,以及最近的Kovan执行层测试网。随着合并(Merge)的到来,客户端开发人员已经决定弃用更多的测试网,以便将精力集中在两个测试网的长期维护: Goerli和Sepolia。
Kiln, Rinkeby和Ropsten将根据以下时间表关闭。
**Kiln:主网合并后 **
Kiln测试网于2022年推出,旨在提供一个合并后的测试环境,将在以太坊主网过渡到PoS后不久关闭,预计将在2022年下半年。开发者不应该使用Kiln作为一个长期的测试环境。它将会是以太坊主网合并后被关闭的第一个测试网。
**Ropsten:2022年第四季度 **
Ropsten测试网,于2022年6月8日通过合并运行,将于2022年第四季度关闭。目前使用Ropsten作为阶段/测试环境的开发人员应该迁移到Goerli或Sepolia。
Rinkeby:2023年第二/三季度
Rinkeby测试网无法通过合并。它将被Sepolia取代,并将在Sepolia过渡到PoS后大约一年后关闭,大约在2023年第二季度/第三季度。
一旦以太坊主网过渡到PoS,Rinkeby将不再是主网的准确模拟环境。目前使用Rinkeby作为阶段/测试环境的开发者应该优先迁移到Goerli或Sepolia,受以太坊向PoS过渡影响的项目应该尽快迁移。
** Goerli&Sepolia **
客户端开发人员将在合并后维护的两个测试网是Goerli和Sepolia。
Goerli网络将与Prater Beacon Chain测试网合并。一个新的信标链已经被创建,为了将Sepolia过渡到PoS。
Goerli的Beacon Chain将对想要运行测试网验证器的用户保持开放。Sepolia将使用一个授权验证器集,类似于今天的一些测试网的工作方式。因此,想要在部署到主网之前测试协议升级的质押者们应该使用Goerli。
Goerli也有一个强大的社区和许多现有的基础设施支持它。它的状态是最接近主网的,这对测试智能合约交互很有用。
另一方面,Sepolia是相当新的。这意味着网络可以快速同步,并且在其上运行节点需要的存储空间更少。这对于希望快速启动节点并直接与网络交互的用户非常有用。
Tokenview