ltc4100引脚定义
Ⅰ IC :LTC4411有什么作用
LTC4411, 凌特公司(Linear Technology)推出的低损耗 Power Path控制器, 采用 ThinSOT™ 封装的 2.6A 低损耗理想二极管。
特点:
PowerPath™“或”二极管的低损耗替代方案
小的已调节正向电压 (28mV)
2.6A 最大正向电流
低正向接通电阻 (最大值为 140mΩ)
低反向漏电流 (<1µA)
2.6V 至 5.5V 工作电压范围
内部电流限值保护
内部热保护
无需外部有源组件
LTC4412 的引脚兼容型单片替代器件
低静态电流 (40µA)
扁平 (1mm) 的 5 引脚 SOT-23 封装。
典型应用:
蜂窝电话
手持式计算器
数码相机
USB 外设
不间断电源
逻辑控制型电源开关。
Ⅱ 电子元件LTMR是什么
是lintear公司的一款放大器,型号是LTC2051,对你有帮助请采纳。
LTC®2051/LTC2052 是双通道/四通道零漂移运算放大器,采用 MS8 和 SO-8/GN16以及 S14 封装。对于空间受限型应用,LTC2051 可提供一种 3mm x 3mm x 0.8mm 双侧引脚细间距无引线封装 (DFN)。它们采用单 2.7V 工作电源,并支持 ±5V 应用。电流消耗为每个运算放大器 750μA。
LTC2051/LTC2052 虽然外形尺寸小巧,但 DC 性能却丝毫不打折扣。典型输入失调电压和失调漂移分别为 0.5μV 和10nV/℃.。利用高于 130dB 的电源抑制比 (PSRR) 和共模抑制比 (CMRR),对几乎为零的 DC 偏移和漂移提供了支持。
输入共模电压范围从负电源至高达正电源的 1V (典型值) 以内。LTC2051/LTC2052 还具有一个增强型输出级,该输出级能够把低至 2kΩ 的负载驱动至正负两个电源轨。开环增益通常为 140dB。另外,LTC2051/LTC2052 还拥有一个 1.5μVP-P 的 DC 至 10Hz 噪声和一个 3MHz 的增益带宽乘积。
专业查询芯片元件代码,经销TI,AD,MAX,ST等原装芯片IC
Ⅲ 求一份LTC1655D/A转换的介绍资料
LTC1655 Datasheet (PDF) - Linear Technology
http://pdf1.alldatasheet.com/datasheet-pdf/view/70801/LINER/LTC1655.html
没有中文资料,大概个你翻译一下。
1脚,时钟
2脚,数字输入,16bit
3脚,读写控制
4脚,数字输出
5脚,Ground,地
6脚,参考电压
7脚,模拟电压输出
8脚,Vcc,电源电压
Ⅳ 采样电阻的应用场合有哪些该怎么选型呢
采样电阻基于磁场的检测方法(以电流互感器和霍尔传感器为代表)采样电阻具有良好的隔离和较低的功率损耗等优点,因此主要在驱动技术和大电流领域被电子工程师们选用,但它的缺点是体积较大,补偿特性、线性以及温度特性不理想。对于电流检测的原理,目前主要有两种的检测:基于磁场的检测方法和基于分流器的检测方法。 由于小体积的高精度低阻值采样电阻器的实用化,以及数据采集和处理器性能的大幅度提升,已经导致传统的基于分流器的电流检测方法的技术革新,并使新的应用成为可能。
然而,电路板上的取样端子和采样电阻组成了一个环状结构,为了避免其间因电流产生的磁场和外围磁场而形成的感应电压,需要特别强调要使取样的信号线形成的区域越小越好,最理想的是微带线设计。采样电阻又电流检测电阻,也有人翻译为电流传感电阻器,英语翻译为current sensing resistor,采样电阻阻值一般小于1欧姆,我见过的最小阻值是0.1毫欧,常用用的有0.025欧,0.028欧,0.05欧等。原理:将采样电阻串入电路中,根据欧姆定律,当被测电流流过电阻时,电阻两端的电压与电流成正比,转换为电压型号进行测量。
低电感:在当今的很多应用中需要测量和控制高频电流,分流器的寄生电感参数也得到了大幅改善。表面贴装电阻器的特殊的低电感平面设计和合金材料的抗磁特性,金属底板,以及四引线连接都有效降低了电阻器的寄生电感。
采样电阻
采样电阻热电动势,当温度轻微升高或者降低时,在不同材料的接触面上会产生热电势,这种效应对低阻值电阻的影响非常重要,尽管通常情况下热电势数值非常小,但微伏级的热电势能够严重地影响测量结果。长期稳定性:对于任何传感器来说,长期稳定性都非常重要。甚至在使用了一些年后,人们都希望还能维持早期的精度。这就意味着电阻材料在寿命周期内一定要抗腐蚀,并且合金成分不能改变。端子连接:在低阻值电阻中,端子的阻值和温度系数的影响往往是不能忽略的。在PCB layout也要注意采样电阻的走线不能太长,太细。我在使用linear LTC4100做充电管理时,版PCB由于忽略了这一点,走线有点长,导致充电电流无法达到我的设定值,后来查了很久才发现是这个问题。
采样电阻应用场合:电源管理(如电源监控)。开关电源SMPS(DC-DC, 充电管理,电源适配器)。如Linear的4100系列锂电池充电电路,采用采样电阻控制充电电流。
选型:常见生产厂家:Vishay, IRC,Ohmite, Bourns, 国产的主要有国巨等。PS:电子元件技术网的选型工具也比较好用。采样电阻都是精密电阻,精度都在1%以内,更好要求时采用0.05%,甚至0.01%,功率有0.25W,0.5W,1W等。 阻值:和普通电阻一样,标准阻值为非连续。表示方法:毫欧电阻可表示为: R001 = 0.001R。25毫欧电阻可表示为: R025 = 0.025R。100毫欧电阻可表示为: R100 = 0.1R。封装:常见的封装有1206/2010/2512。 温度系数:是锰镍铜合金电阻的典型温度特性曲线,温度系数TCR单位为ppm/K,在20或25℃ 时,TCR=[R(T)-R(T0)]/R(T0) ×(T-T0),对于温度系数的定义,制造商标明温度的上限是必要的,举例说明在+20 -+60℃的温度范围内,测量系统经常选用TCR为几百个ppm/K 的低阻值的厚膜电阻器,比如TCR 为200 ppm/K的电阻器的温度特性,即使在如此小的范围内,+50℃的温度变化就足以导致阻值变化超过1%。
Ⅳ 哪位弟兄知道HD7970跑ltc速度650K时功耗多少有没有测过的
完全没问题。
本人整机带显示器测试双7970GHz峰值650W以下,安钛克850W电源。
配置是Z77+E3+光驱+3硬盘。
单卡是整机不超过400W。
你还是好,我的HD7970是XFX讯景,全速只有420,目前各种帖子都无法解释,只有网友说刷BIOS成功解决,但我是无法搞定了。
你如果有其他方法,希望告知。
Ⅵ 哪位大侠能把实用的Protel99se入门教程(图文实例那种)发给我,我现在需要学习这个软件,鄙人在这谢过了
Protel99se教程一:建立一个数据库文件
习Protel99 SE的第一步,是建立一个DDB文件,也就是说,使用protel99se进行电路图和PCB设计,以及其它的数据,都存放在一个统一的DDB数据库中的
一,打开protel 99se后,选择file菜单下的new菜单
第二步:选择新建的项目存放方式为DDB以及文件存放目录
第三步:新建好DDB文件后,我们就可里边的Documents目录下
第五步:可以新建SCH文件了,也就是电路图设计项目
第六步:新建后SCH项目后,在默认的一个protel99se元件库中,可以选择元件放到电路图中了
第七步:我们也可以选择增加自己的元件库
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Protel99se教程二:使用protel99se原理图绘制
使用protel99se绘制原理图,首先要先设置一下显示网格这一项去掉,这一个可以根据个个习惯,并不是一定需要这样的,去掉prote99se的界面的View菜下,将visible Grid选中或取消,可以选择是否显示网格.
下边我们绘制一个简单的原理图,使大家熟悉一下protel99se的原理图操作,这个SCH原理图的所有元件,都可以在我们默认的原件库中下载.
一 、将元件放进SCH原理图中,并且设计元件的属性
第二步:设计元件的属性,包括封装,名称,元件属性等
第三步:在protel99se中设计中,放入网络标号.在同一原理中,所有相同的网络标号,在图纸中,表示同一网络结点
第四步:设点电源地
第五步:在protel99se中,我们放好元件,设计是电源和接地后,我们就可以画线了
如上图所示,我们已经绘制了一个基本的SCH原理图,这个原理包括了基本的电源,负载,以及接地,并且接好了线,下一课,我们将介绍如何时快速将这些图,转化为实际的PCB图形
Protel99se教程三:新建PCB文件以及PCB基本设定
在上一课,我们绘制好SCH原理图后,在这一节课开始,我们介绍,如何将SCH转化成PCB文件,在这一节课,我们主要给大家讲解,如果新建PCB文件以及载入封装图.
第一步:在Documents目录下,新建一个PCB文件,PCB文件即是我们存放PCB电路的文件
第二步:在导航栏中,选择Libraries这一项,这可以让我们在导航栏中,显示当前可以放的封装库,以供选择
第三步:浏览封库以及增加protel99se封装库
第四步:选择封装库并且增加到当前PCB文件中:
第五步:增加好封装库后,我们就要以选择和使用些元件了
第六步:在protel99se绘制PCB图是,有一个单位的选择,可以使用公制以及英制,可以如下图切换,也可以命名便用protel99se快捷健“Q”切换
经过上边的设置后,我们一步即可以将所绘的原理图,转成我们需要的PCB文件图。
下一课我们将介绍,如何将SCH转为PCB文件
Protel99se教程四:将SCH转为PCB文件
本节课,我们介绍,如何快速的将绘制好的SCH文件转为PCB文件,首先,我们打开刚开始时我们绘制的SCH原理图,我们可以用使用protel99se菜单栏的view-Fit All Objects命令,以查看所有的元件,也可以使用protel99se快捷键,V-F ,快速实现这功能
第一步:将SCH转为PCB图型
如上图所示,protel99se开始,有一个非常实用的命令,就是Update PCB,就直直接将SCH直接转为PCB文件,而不用生成网络表再导入
第二步:对SCH转换为PCB的一些选项
第三步:确认转换SCH到PCB
第四步:SCH中的元件以及连线,已经转化为PCB文件了,大家如图所示
第五步:在Protel99se中,如果需要对一个元件进行旋转,我们可以用mouse按住元件后,按空格键进行旋转
第六步:绘制PCB图的外形
绘制PCB的外形图,我们需要在PCB的外形层Keep-Out Layer中画线,画出的紫色线,则是PCB的外形了
第七步:将元件放进PCB中
Protel99se教程五:protel99se的自动布线
在上一节课的protel99se教程中,我们给大家演示的是,如何快速的将SCH原理PCB,也就是将元件转到PCB中,在这一节课,我们主要给大家讲解的是何在protel99se快速布线,我们在这节课当中,主要使用的是自动布线功能,在实际的PCB布线工作当中,我们多数情况,还是使用手工布线的,这些内容,我们也会给大家详细讲解..
第一步:测量PCB板外形大小
在上一节课,我们给大家讲解了如何画了一个PCB的外形,这节课,我们首先测量一下PCB外形大小,看是否合适.
首先,我们将系统单位转为公制,如下图可以在菜单中转换,也可以使用protel99se快捷键"Q"切换
使用测试工具,在protel99se中的Reports-Measure Distance这一项,可以测试两点中的距离,我们也可以使用prote99se快捷键"CTRL+M",快速测试两点的距离.
在protel99se的测量时候,我们需要注意的是,测量哪个层中两点的距离,我们需要将测量的层置为当前工作层,这样在测量的过程当中,就可以捕捉端点了.
第二步:在protel99se中调整元件位置
在protel99se中,拖动元件,就可以移动元件了,需要旋转元件,我们则需要对准元件用MOUSE按中,然后按空格键,我们上PCB图中的所有元件,调整到上图位置.
第三步:检查PCB文件及连接
我们将电路图放大,将会看到在各个焊盘上,都有标示出元件的网络结点号.这使我们可以知道实际的连接是否正确.
第四步:使用protel99se的自动布线功能
在protel99se当中,我们使用菜单Auto Route --ALL,这将会进入自动布线工作界面
第五步:自动布线选项
第六步:protel99se自动布线完成
到这里,使用protel99se自动布线已经完成,在一下课,我们将给大家讲解,如何在protel99se当中创建自己的元件库
Protel99se教程六:创建原理图元件库
在我们平时使用protel99se进行电路以及PCB设计的时候,系统自带的元件库和PCB封装库,只有一小部分,大部份元件的元件库以及封装库,我们都需要自己制作,使用protel99se,我们可以很容易的制作自己需要的元件库,以供使用,在本节protel99se教程中,我们就是给大家演示,如何制作自己的SCH元件库
第一步:进入protel99se的原理图编辑器
第二步:新建一个元件
第三步:绘制SCH元件以及放入元件的管脚
第四步:给新建的元件改名
第五步:绘制制元件的外形以及放入说明文字
绘制好元件库,我们可以保存好,那么,我们绘制的元件,将会保存进入我们的元件库当中了,我们在画SCH原理图的时候,就可以调用这些元件了.
在下一课当中,我们将给大家讲解,如何制作PCB封装库.
Protel99se教程七:创建PCB元件封装
在上一节课当中,我们给大家讲解了如何制作SCH原理图的元件库,这一节课,我们给大家讲解的是如何制作protel99se封装,在我们制作好元件好,需要制作对应的封装库,以供PCB设计所用.
第一步:进入protel99se封装制作界面
在PCB设计界面当中,我们可以在导航样的封装选择器中如下图操作,进入protel99se封装制作界面
第二步:选择编辑的单位
可以有英制和公制.也不一定是一定是公制的,因为有很多元件的单位定义都是英制的,如PIN的引脚距离是10mil,也就是2.54CM,大家可以根据实际情况,选择合适的单位制,在操作当中,我们可以用protel99se快捷键"Q"切换
第三步:新建一个元件封装
第四步:元件封装向导
由于我们是制作自己的元件,所以我们所有东西都是制作,也不需要向导,在这里,我们选择取消,直接进入编辑器
第五步:确认操作界面中心
确认这一步,是为了使我们制作的元件封装,在绝对中心,那么,我们在以后调用元件封装的时候,就可以在元件的中心中拖动了
第六步:更改元件的名字
修改元件的封装名,以后我们在原理图中,编辑元件,填入封装名的时候,就是填入这个名字了
第七步:编辑介面的一些定义
第八步:元件的编辑及管脚的命名
在我们放入的元件焊接脚,在这里,我们需要和元件库中的序号对应,建立起对应的管脚对应关系
第八步,测量各元件的距离
我们画完后,就测量一下各管脚的单位,检查一下和实际元件是否合适
Protel99se教程八:protel99se原理图设计的高级应用
在我们PCB资源网的前边的protel99se教程当中,我们给大家讲解了如何绘制一个简单的原理图,以及如何将SCH原理图转为PCB,再有就是创建SCH元件,以及如何建立protel99se封库,有了上边的这些知识,大家可以对protel99se进行一些工作了,在这一节课当中,我们主要给大家讲解一下,在protel99se的绘制原理图环境当中,我们通过一些设置,使我作的工作更加方便,提升PCB设计效率.以及平常在使用protel99se的时候,一些高级的应用.
protel99se的原理图高级技巧一::进入SCH设置菜单.
在原理图设计环境当中,我们先选择Design菜单下边的options,将会进入原理图的设置页面
protel99se的原理图高级技巧二:设置protel99se原理图的工作页面,我们可以对照下边,对SCH环境进行设置
protel99se的原理图高级技巧三:对元件单方向3脚零件的反转技巧操作
protel99se的原理图高级技巧四:如何在元件试库中搜索元件
protel99se的原理图高级技巧五:退出时分步关闭各个原理图设计窗口
protel99se的原理图高级技巧六:使用DDB数据库去portel文件进行管理
protel99se的原理图高级技巧七:对只需要的文件进行单独输出
Protel99se教程九:protel99se中PCB设计的高级应用
在上一节我们PCB资源网的protel99se教程当中,我们给大家讲解了在protel99se进行原理图设计中的一些高级应用技巧,在这一节protel99se教程当中,我们将给大家讲解的是,在protel99se的电路图,也就是PCB设计中的一些高级应用技巧,通知本节的课程,大家在设计PCB的时候,可以提高不少效率.
第一:将不同的网络结点线,用不同的颜色标识
第二:对焊盘进行"补泪滴"
第三:在protel99se中如何覆铜
第四:打印PCB是,焊盘如何显示中间为空
第五:如何在PCB中快速到到要找的元件
第六:在protel99se中增加汉字
第一步:安装好PROTEL99SE,运行主菜单下的“放置>汉字”
第二步:在弹出的菜单中进行相应的设置:1设置要输入的汉字,2设置汉字所在的层,3设置字体和字号大,4小选择文字为空心的还是实心的效果,5设置好以后确定,这样系统就已经记下了你的设置,以备随时调用。
第三步:此时再次运行主菜单下的“放置>汉字”,把鼠标停在要加汉字的地方几秒,就会出现你刚才设置好的汉字的虚影,此时点击鼠标左键会将汉字定位,点击右键则会取消此次操作。
到这里,设置的方法大至已经讲完,希望大家都能轻松的把自己的PCB作品加上漂亮的汉字。让在PCB上面不再只是高手的密技,下面是二个实际效果,一个是虚线的效果,一个是实线的效果。只是一些效果演示,层是乱设置的,只为说明原理,望各位兄台不要见怪:
ic技术应用:PROTEL99SE GERBER输出各层文件后缀名定义
toplayer .gtl 顶层走线
猫猫发布了LTC3441EDE#TRPBF,数量5235 厂商LINEAR 批号06+ 封装12-DFN 原装现货,购买LTC3441EDE#TRPBF请来这里咨询LTC3441EDE#TRPBF价格bottomlayer .gbl 底层走线
topoverlay .gto 顶层丝印
bottomoverlay .gbo 底层丝印
toppaste .gtp 顶层表贴(做激光模板用)
bottompaste .gbp 底层表贴(做激光模板用)
topsolder .gts 顶层阻焊(也叫防锡层,负片)
bottomsolder .gbs 底层阻焊(也叫防锡层,负片)
midlayer1 .g1 内部走线层1
midlayer2 .g2 内部走线层2
midlayer3 .g3 内部走线层3
midlayer4 .g4 内部走线层4
internalplane1 .gp1 内平面1(负片)
internalplane2 .gp2 内平面2(负片)
mechanical1 .gm1 机械层1
mechanical3 .gm3 机械层3
mechanical4 .gm4 机械层4
keepoutlayer .gko 禁止布线层
drillguide .gg1 钻孔引导层
drilldrawing .gd1 钻孔图层
top pad master .gpt 顶层主焊盘
bottom pad master .gpb 底层主焊盘
Ⅶ LTC2165CUK, XC7Z100-2FFG900I 这两个是哪个公司的芯片怎么看芯片规
产品型号:LTC2165CUK#PBF
产品名称:模数转换器
LTC2165CUK#PBF供应商:拍明芯城元器件商城(正在供货)
LTC2165CUK#PBF特征
76.8dB SNR
90dB SFDR
低功率:194mW / 163mW / 108mW
单 1.8V 电源
CMOS、DDR CMOS 或 DDR LVDS 输出
可选的输入范围:1VP-P 至 2VP-P
550MHz 满功率带宽 S/H (采样及保持)
任选的数据输出随机函数发生器
任选的时钟占空比稳定器
停机和打盹模式
用于配置的串行 SPI 端口
48 引脚 (7mm x 7mm) QFN 封装
LTC2165CUK#PBF产品详情
LTC2165CUK#PBF是采样 16 位 A/D 转换器,专为对高频、宽动态范围信号进行数字化处理而设计。这些器件非常适合要求苛刻的通信应用,其 AC 性能包括 77dB SNR 和 90dB 无寄生动态范围 (SFDR)。0.07psRMS 的超低抖动实现了 IF 频率的欠采样和的噪声性能。 DC 规格包括整个温度范围内的 ±2LSB INL (典型值)、±0.5LSB DNL (典型值) 和无漏失码。转换噪声为 3.3LSBRMS。 数字输出可以是全速率 CMOS、双倍数据速率 CMOS 或双倍数据速率 LVDS。一个单独的输出电源提供了 1.2V 至 1.8V 的 CMOS 输出摆幅。
LTC2165CUK#PBF应用
通信
蜂窝基站
软件定义无线电
便携式医学成像
多通道数据采集
非破坏性测试
相关型号
LTC2259-14/LTC2260-14/
LTC2261-14
LTC2262-14
LTC2266-14/LTC2267-14/
LTC2268-14
LTC2266-12/LTC2267-12/
LTC2268-12
LTC2182/LTC2181/
LTC2180
LTC2142-14/LTC2141-14/
LTC2140-14
LTC5517
LTC5557
LTC5575
AD9637BCPZ-40 −
AD9637BCPZRL7-40
AD9637BCPZ-80
AD9637BCPZRL7-80
AD9637-80EBZ
AD9633BCPZ-80
AD9633BCPZRL7-80
AD9633BCPZ-105
AD9633BCPZRL7-105
AD9633BCPZ-125
AD9633BCPZRL7-125
AD9633-125EB
AD9257BCPZ-40
AD9257BCPZRL7-40
AD9257BCPZ-65
AD9257BCPZRL7-65
AD9257-65EBZ
AD9253TCPZ-125EP
AD9253TCPZR7-125EP
LTC2208 1
LTC2158-14
LTC2157-14/LTC2156-14/
LTC2155-14
LTC2152-14/LTC2151-14/
LTC2150-14
LTC2153-14
LTC2207/LTC2206
LTC2217/LTC2216
Ⅷ 谁知道LTC1865芯片的引脚图和各个引脚的作用,在线等,很急!急!急!急!!!!!!
自己去网络吧,相关资料很多。