当前位置:首页 » 币种行情 » ltc1864电路

ltc1864电路

发布时间: 2023-05-21 05:26:30

『壹』 急求《单片机C语言程序设计实训100例——基于8051+Proteus仿真》第三部分综合设计C语言源代码

这本书一共5章节,你说第三部分指的哪里?
第五章才是综合设计部分啊,而且这部分有好多例程,也不知道你要哪部分?
第1章 8051单片机C语言程序设计概述 1
1.1 8051单片机引脚 1
1.2 数据与程序内存 5
1.3 特殊功能寄存器 6
1.4 外部中断、定时器/计数器及串口应用 8
1.5 有符号与无符号数应用、数位分解、位操作 9
1.6 变量、存储类型与存储模式 11
1.7 关于C语言运算符的优先级 13
1.8 字符编码 15
1.9 数组、字符串与指针 16
1.10 流程控制 18
1.11 可重入函数和中断函数 19
1.12 C语言在单片机系统开发中的优势 20
第2章 Proteus操作基础 21
2.1 Proteus操作界面简介 21
2.2 仿真电路原理图设计 22
2.3 元件选择 25
2.4 调试仿真 29
2.5 Proteus与Vision 3的联合调试 29
2.6 Proteus在8051单片机应用系统开发的优势 30
第3章 基础程序设计 32
3.1 闪烁的LED 32
3.2 双向来回的流水灯 34
3.3 花样流水灯 36
3.4 LED模拟交通灯 38
3.5 分立式数码管循环显示0~9 40
3.6 集成式数码管动态扫描显示 41
3.7 按键调节数码管闪烁增减显示 44
3.8 数码管显示4×4键盘矩阵按键 46
3.9 普通开关与拨码开关应用 49
3.10 继电器及双向可控硅控制照明设备 51
3.11 INT0中断计数 53
3.12 INT0及INT1中断计数 55
3.13 TIMER0控制单只LED闪烁 58
3.14 TIMER0控制数码管动态管显示 62
3.15 TIMER0控制8×8LED点阵屏显示数字 65
3.16 TIMER0控制门铃声音输出 68
3.17 定时器控制交通指示灯 70
3.18 TIMER1控制音阶演奏 72
3.19 TIMER0、TIMER1及TIMER2实现外部信号计数与显示 75
3.20 TIMER0、TIMER1及INT0控制报警器与旋转灯 77
3.21 按键控制定时器选播多段音乐 79
3.22 键控看门狗 82
3.23 双机串口双向通信 84
3.24 PC与单片机双向通信 90
3.25 单片机内置EEPROM读/写测试 95
第4章 硬件应用 99
4.1 74HC138译码器与反向缓冲器控制数码管显示 100
4.2 串入并出芯片74HC595控制数码管显示四位数字 103
4.3 用74HC164驱动多只数码管显示 106
4.4 并串转换器74HC165应用 110
4.5 用74HC148扩展中断 112
4.6 串口发送数据到2片8×8点阵屏滚动显示 115
4.7 数码管BCD解码驱动器CD4511与DM7447应用 117
4.8 62256RAM扩展内存 119
4.9 用8255实现接口扩展 121
4.10 可编程接口芯片8155应用 124
4.11 串行共阴显示驱动器控制4+2+2集成式数码管显示 129
4.12 14段与16段数码管演示 133
4.13 16键解码芯片74C922应用 136
4.14 1602字符液晶工作于8位模式直接驱动显示 139
4.15 1602液晶显示DS1302实时时钟 148
4.16 1602液晶屏工作于8位模式由74LS373控制显示 153
4.17 1602液晶屏工作于4位模式实时显示当前时间 155
4.18 1602液晶屏显示DS12887实时时钟 159
4.19 时钟日历芯片PCF8583应用 167
4.20 2×20串行字符液晶屏显示 174
4.21 LGM12864液晶屏显示程序 177
4.22 TG126410液晶屏串行模式显示 184
4.23 Nokia7110液晶屏菜单控制程序 192
4.24 T6963C液晶屏图文演示 199
4.25 ADC0832 A/D转换与LCD显示 211
4.26 用DAC0832生成锯齿波 215
4.27 ADC0808 PWM实验 217
4.28 ADC0809 A/D转换与显示 220
4.29 用DAC0808实现数字调压 221
4.30 16位A/D转换芯片LTC1864应用 223
4.31 I2C接口存储器AT24C04读/写与显示 225
4.32 I2C存储器设计的中文硬件字库应用 233
4.33 I2C接口4通道A/D与单通道D/A转换器PCF8591应用 237
4.34 I2C接口DS1621温度传感器测试 241
4.35 用兼容I2C接口的MAX6953驱动4片5×7点阵显示器 246
4.36 用I2C接口控制MAX6955驱动16段数码管显示 250
4.37 I2C接口数字电位器AD5242应用 254
4.38 SPI接口存储器AT25F1024读/写与显示 257
4.39 SPI接口温度传感器TC72应用测试 264
4.40 温度传感器LM35全量程应用测试 268
4.41 SHT75温湿度传感器测试 272
4.42 直流电机正、反转及PWM调速控制 278
4.43 正反转可控的步进电机 281
4.44 ULN2803驱动点阵屏仿电梯数字滚动显示 284
4.45 液晶显示MPX4250压力值 286
4.46 12864LCD显示24C08保存的开机画面 289
4.47 用M145026与M145027设计的无线收发系统 293
4.48 DS18B20温度传感器测试 296
4.49 1-Wire式可寻址开关DS2405应用测试 303
4.50 MMC存储卡测试 307
第5章 综合设计 316
5.1 带日历时钟及温度显示的电子万年历 316
5.2 用8051+1601LCD设计的整型计算器 321
5.3 电子秤仿真设计 328
5.4 1602液晶屏显示仿手机键盘按键字符 332
5.5 用24C04与1602液晶屏设计的简易加密电子锁 336
5.6 1-Wire总线器件ROM搜索与多点温度监测 341
5.7 高仿真数码管电子钟设计 356
5.8 用DS1302与12864LCD设计的可调式中文电子日历 360
5.9 用T6963C液晶屏设计的指针式电子钟 366
5.10 T6963C液晶屏中文显示温度与时间 370
5.11 T6963C液晶屏曲线显示ADC0832两路A/D转换结果 372
5.12 温度控制直流电机转速 374
5.13 用74LS595与74LS154设计的16×16点阵屏 377
5.14 用8255与74LS154设计的16×16点阵屏 379
5.15 红外遥控收发仿真 381
5.16 GP2D12红外测距传感器应用 388
5.17 三端可调正稳压器LM317应用测试 395
5.18 数码管显示的K型热电偶温度计 399
5.19 交流电压检测与数字显示仿真 403
5.20 用MCP3421与RTD-PT100设计的铂电阻温度计 407
5.21 可接收串口信息的带中英文硬字库的80×16 LED点阵屏 414
5.22 模拟射击训练游戏 422
5.23 GPS仿真 427
5.24 温室监控系统仿真 431
5.25 基于Modbus总线的数据采集与开关控制系统设计仿真 437

建议你到脚本之家网站去搜索一下看看有没有这本书的电子档。

『贰』 脉冲频率调制开关稳压器电路分析

V4V5组成无稳态多谐振荡器。

无稳态即指它不能稳定在某种状态,会不断的发生改变。两个管轮流导通截止。

多谐指输出的波形不是正弦波,有很多谐波成分。

比多谐振荡器并不完全对称,所以输出的波形是不对称的。V4的导通时间由R8、R5和V3的集电极电压决定。

V2是一个射极跟随器(跟随输出电压),把输出的电源电压反馈到V3的发射级,由V3放大后控制V4的导通时间。

V4导通V5截止,V4截止V5导通。

V5截止时,V1导通,通过V5的截止时间控制V1的导通时间。V1导通时间越长,输出电压越高。

V1输出的电压经L1和C1滤波变成稳定的直流电源输出。

VD4是增强二极管,防止L1在V1截止时产生的高反压击穿V1发射极基极。

VD1是泄流二极管,防止L1产生的感应电流损坏V1。

此电路主要工作在开关状态,所以比较容易分析。

V2V3是射极偶合放大电路,VD2为V3基极提供更稳定一点的电位,增强R4的偶合效率。

VD3为振荡器和放大取样电路提供相对稳定一点的工作电压。

R1R2是V2的基极偏置电路,同时也是输出电源的取样电路。

『叁』 求助索尼笔记本主板MBX-49开机电路(LTC1628)

楼主的电路图是自己根据板子上的样子画出来的(主板都是4层及以上的,看板画图是不太可能的)???还是哪儿来的??

不管怎么来的,图都是错的。vin是5.2---28v的输入端,sw1,sw2是5v---36v转换电压输出端。

你的电路画的太简单了,要是看板画图,基本是不可能的,电脑主板都是好几层的pcb板。你的问题还是找供电问题,元器件问题后芯片问题,这样的顺序排除故障。

你看看这个应用电路也许对你有点帮助

『肆』 如何提高差分放大器的共模抑制比这个方法要掌握

在诸多应用领域中,采用模拟技术时都需要使用差分放大器电路。例如测量技术,根据其应用的不同,可能需要极高的测量精度。为了达到这一精度,尽可能减少典型误差源(例如失调和增益误差,以及噪声、容差和漂移)至关重要。为此,需要使用高精度运算放大器。放大器电路的外部元件选择也同等重要,尤其是电阻,它们应该具有匹配的比值,而不能任意选择。

图 1. 传统的差分放大器电路。

理想情况下,差分放大器电路中的电阻应仔细选择,其比值应相同 (R2/R1 = R4/R3)。这些比值有任何偏差都将导致不良的共模误差。差分放大器抑制这种共模误差的能力以共模抑制比(CMRR) 来表示。它表示输出电压如何随相同的输入电压(共模电压)而变化。

在最佳情况下,输出电压不应该改变,因为它只取决于两个输入电压之间的差值(最大 CMRR);但是,实际使用中情况会有所不同。CMRR 是差分放大器电路的重要特性,通常以 dB 来表示。

对于图 1 所示的差分放大器电路,CMRR 取决于放大器本身以及外部连接的电阻。对于后者,取决于电阻的 CMRR 在本文下述部分以下标"R"表示,并利用下式计算:

例如,在放大器电路中,所需增益 G = 1 且使用容差为 1%、匹配精度为 2% 的电阻产生的共模抑制比为

在 34 dB时,CMRRR相对较低。在这种情况下,即使放大器具有非常好的 CMRR,也无法实现高精度,因为链路的精度总是取决于其精度最差的环节。因此,对于精密的测量电路而言,必须非常精确地选择电阻。

实际使用中传统电阻的阻值并不恒定。它们会受机械负载和温度的影响。根据需求的不同,可以使用具有不同容差的电阻或匹配电阻对(或网络),其大部分使用薄膜技术制造并具有精确的比值稳定性。利用这些匹配的电阻网络(如LT5400 四通道匹配电阻网络),可以大幅提高放大器电路的整体 CMRR。 LT5400 电阻网络在整个温度范围内具有出色的匹配性,结合差分放大器电路使用则匹配性更佳,因而可确保 CMRR 比分立电阻提高两倍。

图 2. 带有 LT5400 的差分放大器电路。

LT5400 提供 0.005% 的匹配精度,从而使 CMRRR达到 86 dB。然而,放大器电路的总共模抑制比 (CMRRTotal) 由电阻 CMRR 和运算放大器共模抑制比 CMRROP 的组合构成。对于差分放大器,可利用公式 3 计算:

例如, LT1468提供的 CMRROP 典型值为 112 dB,采用 LT5400 的增益为 G = 1,其 CMRRTotal的值为 85.6 dB。

或者,可以使用集成式差分放大器,如LTC6363。这种放大器在单芯片中内置放大器和最佳匹配电阻。它几乎消除了上述所有问题,同样也可提供最大精度,其 CMRR 值达 90 dB 以上。

THE END

在设计中必须根据差分放大器电路的精度要求仔细选择外部电阻电路,以便实现系统的高性能。或者,可以使用集成式差分放大器,如在单芯片中集成了匹配电阻的 LTC6363。

『伍』 笔记本保护隔离电路常见故障

如果笔记本电脑接上电源适配器,测试公共点上没有16V左右的电压,这时需要检修保护隔离电路。
1.检测输入电压
在检修笔记本电脑的时候先拔掉笔记本电脑电池,接上可调电源,测量笔记本电脑主板电源接口是否有15-24V的电压输入,监测整机电流,同时判断电源适配器是否正常。

       2.检测输出电压

       找到主板的公共点。以目前采用最多的MAX1632的第22脚为公共点,LTC1628的22脚是公共点,或者测试该芯片的电源滤波电容两端的电压,以及高端场效管的D级电压。

测量主板公共点的电压是否正常。如果电压正常说明整个保护隔离电路是良好的,其他部位有故障;如果公共点没有电压,则需要检修保护隔离电路。
笔记本电脑的电路比较紧密,不容易查找,在测试过程中,选择标志性的元件。
3.检查输入与输出电路之间的元件
当确定保护隔离电路有故障时,从电源接口开始跑电路,找出电源接口和公共点之问的电子元件。保护隔离电路的元件很少,关键性元件最多不超过五个,典型电路如下图所示。

保护隔离电路的测量方法。
(1)用万用表1?Ω挡测量公共点和电源接口对地电阻,判断是否短路,如电阻接近或等于0Ω,说明有电路有短路故障,首先排除短路元件。
(2)从电源接口依次测量电压,如共模滤波器、保险管、隔离二极管和场效应管,哪一个元件有电压输入、没有输出,说明该元件可能有故障。
(3)如果场效应管有电压输入、没有输出,断电后判断场管为N沟通还是P沟道,确定场管的G极为高电平导通还是低电平导通,然后加电测试场管的G极控制电压是否正常,如控制条件满足但场效应管不工作,说明场效应管损坏,需要更换场效应管,如G极没有相应的电平,不符合场效应管导通条件,按下开机键测量是否能工作,否则应检修场管G极相连接的控制电路。
N沟通场效应管的栅极为高电平时场效应管导通,P沟道场效应管的栅极为低电平时场效应管导通。

『陆』 LTC1044负电压转换器什么原理,什么用

简易的频率到电压转换器
简易的频率到电压转换器 简易的频率电压转换器,在0到3.4kHz范围内提供1mV/Hz信号输出 如图是一个简易的频率到电压转换器,它使用了开关电容式电压转换器。该电路的输 出电压符合下面的等式,此处K=2.44(对于LTC1044),f为输入频率。 Vout=K×f×R1×C1 当电源电压为+5V时,Vout的最大值接近3.4V。在使用该电路时,应重视电源的稳压和滤 波。按图所示电路的参数值,在0到3.4kHz的范围内输出信号以1mV/Hz变化。你可以通过 选择C2的值来达到较理想的响应时间和脉动。在LTC1044的7脚输入的最大频率约为100k Hz。你也可以用7660等元件替换IC1,但温度稳定性不好,且一定程度上有不同的K值。

『柒』 MCP6S21/2/6/8这个芯片在电路中是什么功能

一般运放调节增益需要改变反馈电阻,需要调节硬件,加MCP6S21可以软件修正因为电阻精度问题产生的增益误差。

『捌』 这个防反接电路的原理

大概原理是这样,这是集成运放构成的反电压保护电路,不反接第一个集成运放输出为U-<U+=Uo=+UoM高电平,对应的三极管导通,第二个集成运放U+<U-=Uo=-UoM低电平对应的Q1导通,反接侧输出状态跟上面相反。
假如电源出现故障或短路,那么 ltc4357 确保在 0.5us 内迅速断开,以最大限度地减小反向瞬态电流。ltc4357 还可以用来保护电源免受反向电压影响,为下游电子组件提供输进反向保护。另外,该器件可以利用一个热插拔(hot swap)控制器和保持电容器进行配置,以在输进功率损失之后提供一段时间的输进电源保持。这样一来,在出现短暂的输进电源中断后,无需复位或重新启动就能实现系统连续工作。

『玖』 电路设计中需要一个整流芯片,可以将交流信号转化为直流信号。8个管脚的。求大神。。

如果你是要进行电源整流,那么用整流桥,但是整流桥一般都是4脚的。
如果你是要进行交流信号电压到与之相对应的有效值直流电压之间的转换,那么应该用真有效值转换器。
真有效值转换器中8脚的有以下型号:
LTC1966、LTC1967、LCT1968、AD736、AD737。

『拾』 充电电路原理图解释

上图为充电器原理图,下面介绍工作原理。

1.恒流、限压、充电电路。该部分由02、R6、R8、ZD2、R9、R10和R13等元件组成。当接通市电叫,开关变压器T1次级感应出交流电压。经D4、C4整流滤波后提供约12.5V直流电压。一路通过R6、R1l、R14、LED3(FuL饱和指示灯)和R15形成回路,LED3点亮,表示待充状态:另一路电压通过R8限流,ZD2(5V1)稳压,再由并联的R9、R10和R13分压为Q2b极提供偏置,使Q2处于导通预充状态。恒流源机构由Q2与其基极分压电阻和ZD2等元件组成。当装入被充电池时12.5V电压即通过R6限流,经Q2的c—e极对电池恒流充电。这时由于Ul(Ul为软封装IC型号不详)与R6并联。R6两端的电压降使其①脚电位高于③脚,②脚就输出每秒约两个负脉冲。

使LED2(CH充电指示灯)频频闪烁点亮,表示正在正常充电。随着被充电池端电压的逐渐升高,即Q2 e极电位升高,升至设定的限压值(4.25V)时,由于Q2的b极电位不变,使Q2转入截止,充电结束。这时Q2c极悬空,Ul的③脚呈高电位,U1的②脚输出高电平,LED2熄灭。这时电流就通过R6、R11、R14限流对电池涓流充电,并点亮LED3。LED3作待充、饱和、涓流充电三重指示。

2.极性识别电路。此部分由R12和LEDl(TEST红色极性指示灯)构成。保护电路由Q3和R7等元件构成。假设被充电池极性接反了。

LED1就正偏点亮,警告应切换开关K,才能正常充电。如果电池一旦接反,Q3的I)极经R7获得正偏置,Q3导通,Q2的b极电位被下拉短路而截止,阻断了电流输出(否则电池就会被反充而报废),从而保护了电池和充电器两者的安全。

热点内容
区块链前景相关 发布:2025-07-01 20:51:20 浏览:962
三个矿机四个月可以产多少币 发布:2025-07-01 20:34:52 浏览:956
数字货币和ico 发布:2025-07-01 20:22:01 浏览:521
支持usdt的交易所 发布:2025-07-01 20:21:52 浏览:278
数字货币ae的主网上线时间 发布:2025-07-01 20:20:18 浏览:503
挖比特币矿的软件 发布:2025-07-01 20:05:35 浏览:893
摩根币云矿机登录系统 发布:2025-07-01 20:02:20 浏览:568
btc大方向仍然处于上升 发布:2025-07-01 19:19:00 浏览:624
trx如何练臀 发布:2025-07-01 19:11:54 浏览:894
币圈最新消息eos 发布:2025-07-01 19:09:32 浏览:23