sha256演算法的虛擬貨幣
1. 虛擬貨幣的Scrypt核心演算法是怎麼算的
最新發行的雷樂幣就是Scrypt核心演算法,也傾向於CPU挖礦
2. 加密演算法 sha256 安全嗎
你說的是sha256簽名演算法吧,安全系數不錯的,都是國際標准加密演算法,現在市場上的很多透明加密軟體都有採用此加密演算法,破壞簽名修改數據就會使加密軟體不能使用,我自己了解的免費加密軟體紅線隱私保護系統就有使用該簽名演算法。
3. 最著名的虛擬貨幣有哪些
除了比特幣之外,虛擬世界還存在很多別的虛擬貨幣。
Litecoin
Litecoin(LTC)發布於2011年10月7日,是目前市值最高的山寨幣,約為 BTC 市值的2%。目前單價為2.31美元,總幣值 3800 萬美元。
這同樣是一種分布式(去中心化)的數字貨幣。不同於比特幣使用的 SHA256 挖礦演算法,LTC 採用 scrypt 演算法。獨特的演算法也是從山寨幣中脫穎而出的關鍵,scrypt 演算法使用 SHA256 作為其子程序,而 scrypt 自身需要大量的內存,每個散列作為輸入的種子使用的,然後與需要大量的內存存儲另一種子偽隨機序列,共同生成序列的偽隨機點而輸出哈希值。在 BTC(Bitcoin)的開采依靠單純的顯卡挖礦已經力不從心(利用一般配置顯卡挖到一個 BTC 大概需要十幾到數十天),各種價格不菲挖礦機的出現提高了普通人通過挖礦獲得 BTC 的門檻,而 LTC 在使用 PC 顯卡挖礦上具有一定優勢。(本段來源於知乎。)
Litecoin 對比 BTC 在技術上做了一點的改進,如果現在 BTC 是金,那 LTC 暫時是銀。
Litecoin 的最大優點是能更快確認 真偽,該虛擬貨幣由 Charles Lee 設計和維護。比特幣的交易需要驗證,驗證的時間平均在10分鍾以上,大多數交易網站驗證需要1個小時。Litecoin 交易確認平均為2.5分鍾,開發者聲稱縮短驗證增加了虛擬貨幣的實用性。定製機器和 AMD GPU 的比特幣采礦效率最高,令使用 CPU 采礦的礦工幾乎無利可圖。Litecoin 的采礦排除了 GPU 和定製處理器,因此不過於依賴少量專業礦工。
PPCoin
PPCoin(PPC) 發布於2012年8月19,在 BTC 原有技術上有所提升。使用 proof-of-stake,並加入 coin age 概念。
PPCoin 是 Bitcoin 的分叉項目,目標是實現能源效率,並盡可能保持原 Bitcoin 的最好性能。PPCoin 單價0.22美元,總幣值 400 萬美元。
PPCoin 沒有一個固定的貨幣供應量上限,但這並不意味著 PPCoin 比 Bitcoin 有明顯通脹。可以將 Bitcoin 比做黃金,黃金每年的通脹是1-3%左右,雖然黃金並沒有已知的貨幣供應量上限,但我們仍知道它是可靠的稀缺品。
PPCoin 的鑄造有兩種類型,工作證明及股權證明。工作證明的鑄幣率受摩爾定律影響,這取決於我們的工作證明能力的成倍增長。而大家都知道的是摩爾定律最終會結束,到那時通脹的 PPCoin 可能已經接近黃金的水平。而股權證明鑄造每年最多通脹 1%。與此同時,PPCoin 的交易費用被銷毀以抗衡通脹。所以整體來說, PPCoin 的鑄幣設計仍是未來一個非常低的通脹設計,可以達到和 Bitcoin 相媲美的程度。
PPCoin 的獎勵方式類似彩票,會根據礦工持有的 PPCoin 數量決定獲勝幾率,創始人之一的 Sunny King 說,他們的設計是基於長期能量效率的新概念。
Terracoin
Terracoin(TRC)發布於2012年10月26,總幣量 4200 萬。每塊速度為2分鍾,比 LTC 稍快一些。技術上沒有太多特別之處,類似 BTC 每4年產量減半。
不過運營團隊似乎有較強商業背景,可能會在流通上優於其他比特幣。虛擬貨幣現在的發展越來越得到重視,現在一些有商業背景的團隊進入,會加速虛擬貨幣的發展。
Namecoin
Namecoin 是一個基於比特幣技術的分布式域名系統,其原理和 Bitcoin 一樣, 這個開源軟體首次發布的日期是2011年4月18日。
Namecoin 產生於一個不同於 Bitcoin 主交易區塊的起源塊, 使用一個新的區塊鏈(blockchain),獨立於 Bitcoin 的區塊鏈之外,因為是基於 Bitcoin,域名的安全性, 分布性, 魯棒性, 加密性, 遷移都有數學保證。可以用挖 Bitcoin 的方式,同時挖 Namecoin。
這個項目由 bitdns 討論並提出,主要是對目前 DNS 的缺陷不滿。Namecoin 惟一的頂級域名是 .bit, 注冊 .bit 域名需要花費 Namecoin。
另外,什麼q幣,盛大幣,起點幣,各種網路游戲幣等也是虛擬貨幣。
4. SHA-256演算法是什麼
SHA 家族
SHA (Secure Hash Algorithm,譯作安全散列演算法) 是美國國家安全局 (NSA) 設計,美國國家標准與技術研究院 (NIST) 發布的一系列密碼散列函數。正式名稱為 SHA 的家族第一個成員發布於 1993年。然而現在的人們給它取了一個非正式的名稱 SHA-0 以避免與它的後繼者混淆。兩年之後, SHA-1,第一個 SHA 的後繼者發布了。 另外還有四種變體,曾經發布以提升輸出的范圍和變更一些細微設計: SHA-224, SHA-256, SHA-384 和 SHA-512 (這些有時候也被稱做 SHA-2)。
SHA-0 和 SHA-1
最初載明的演算法於 1993年發布,稱做安全散列標准 (Secure Hash Standard),FIPS PUB 180。這個版本現在常被稱為 "SHA-0"。它在發布之後很快就被 NSA 撤回,並且以 1995年發布的修訂版本 FIPS PUB 180-1 (通常稱為 "SHA-1") 取代。根據 NSA 的說法,它修正了一個在原始演算法中會降低密碼安全性的錯誤。然而 NSA 並沒有提供任何進一步的解釋或證明該錯誤已被修正。1998年,在一次對 SHA-0 的攻擊中發現這次攻擊並不能適用於 SHA-1 — 我們不知道這是否就是 NSA 所發現的錯誤,但這或許暗示我們這次修正已經提升了安全性。SHA-1 已經被公眾密碼社群做了非常嚴密的檢驗而還沒發現到有不安全的地方,它現在被認為是安全的。
SHA-0 和 SHA-1 會從一個最大 2^64 位元的訊息中產生一串 160 位元的摘要然後以設計 MD4 及 MD5 訊息摘要演算法的 MIT 教授 Ronald L. Rivest 類似的原理為基礎來加密。
SHA-0 的密碼分析
在 CRYPTO 98 上,兩位法國研究者展示了一次對 SHA-0 的攻擊 (Chabaud and Joux, 1998): 散列碰撞可以復雜到 2^61 時被發現;小於 2^80 是理想的相同大小散列函數。
2004年時,Biham 和 Chen 發現了 SHA-0 的近似碰撞 — 兩個訊息可以散列出相同的數值;在這種情況之下,142 和 160 位元是一樣的。他們也發現了 SHA-0 在 80 次之後減少到 62 位元的完整碰撞。
2004年8月12日,Joux, Carribault, Lemuet 和 Jalby 宣布了完整 SHA-0 演算法的散列碰撞。這是歸納 Chabaud 和 Joux 的攻擊所完成的結果。發現這個碰撞要復雜到 2^51, 並且用一台有 256 顆 Itanium2 處理器的超級電腦耗時大約 80,000 CPU 工作時 。
2004年8月17日,在 CRYPTO 2004 的 Rump 會議上,Wang, Feng, Lai, 和 Yu 宣布了攻擊 MD5、SHA-0 和其他散列函數的初步結果。他們對 SHA-0 攻擊復雜到 2^40,這意味著他們攻擊的成果比 Joux 還有其他人所做的更好。該次 Rump 會議的簡短摘要可以在 這里找到,而他們在 sci.crypt 的討論,例如: 這些結果建議計劃使用 SHA-1 作為新的密碼系統的人需要重新考慮。
更長的變種
NIST 發布了三個額外的 SHA 變體,每個都有更長的訊息摘要。以它們的摘要長度 (以位元計算) 加在原名後面來命名:"SHA-256", "SHA-384" 和 "SHA-512"。它們發布於 2001年的 FIPS PUB 180-2 草稿中,隨即通過審查和評論。包含 SHA-1 的 FIPS PUB 180-2,於 2002年以官方標准發布。這些新的散列函數並沒有接受像 SHA-1 一樣的公眾密碼社群做詳細的檢驗,所以它們的密碼安全性還不被大家廣泛的信任。2004年2月,發布了一次 FIPS PUB 180-2 的變更通知,加入了一個額外的變種 "SHA-224",定義了符合雙金鑰 3DES 所需的金鑰長度。
Gilbert 和 Handschuh (2003) 研究了新的變種並且沒有發現弱點。
SHAd
SHAd 函數是一個簡單的相同 SHA 函數的重述:
SHAd-256(m)=SHA-256(SHA-256(m))。它會克服有關延伸長度攻擊的問題。
應用
SHA-1, SHA-224, SHA-256, SHA-384 和 SHA-512 都被需要安全散列演算法的美國聯邦政府所應用,他們也使用其他的密碼演算法和協定來保護敏感的未保密資料。FIPS PUB 180-1 也鼓勵私人或商業組織使用 SHA-1 加密。Fritz-chip 將很可能使用 SHA-1 散列函數來實現個人電腦上的數位版權管理。
首先推動安全散列演算法出版的是已合並的數位簽章標准。
SHA 散列函數已被做為 SHACAL 分組密碼演算法的基礎。
SHA-1 的描述
以下是 SHA-1 演算法的偽代碼:
(Initialize variables:)
a = h0 = 0x67452301
b = h1 = 0xEFCDAB89
c = h2 = 0x98BADCFE
d = h3 = 0x10325476
e = h4 = 0xC3D2E1F0
(Pre-processing:)
paddedmessage = (message) append 1
while length(paddedmessage) mod 512 <> 448:
paddedmessage = paddedmessage append 0
paddedmessage = paddedmessage append (length(message) in 64-bit format)
(Process the message in successive 512-bit chunks:)
while 512-bit chunk(s) remain(s):
break the current chunk into sixteen 32-bit words w(i), 0 <= i <= 15
(Extend the sixteen 32-bit words into eighty 32-bit words:)
for i from 16 to 79:
w(i) = (w(i-3) xor w(i-8) xor w(i-14) xor w(i-16)) leftrotate 1
(Main loop:)
for i from 0 to 79:
temp = (a leftrotate 5) + f(b,c,d) + e + k + w(i) (note: all addition is mod 2^32)
where:
(0 <= i <= 19): f(b,c,d) = (b and c) or ((not b) and d), k = 0x5A827999
(20 <= i <= 39): f(b,c,d) = (b xor c xor d), k = 0x6ED9EBA1
(40 <= i <= 59): f(b,c,d) = (b and c) or (b and d) or (c and d), k = 0x8F1BBCDC
(60 <= i <= 79): f(b,c,d) = (b xor c xor d), k = 0xCA62C1D6
e = d
d = c
c = b leftrotate 30
b = a
a = temp
h0 = h0 + a
h1 = h1 + b
h2 = h2 + c
h3 = h3 + d
h4 = h4 + e
digest = hash = h0 append h1 append h2 append h3 append h4
注意:FIPS PUB 180-1 展示的構想,用以下的公式替代可以增進效能:
(0 <= i <= 19): f(b,c,d) = (d xor (b and (c xor d)))
(40 <= i <= 59): f(b,c,d) = (b and c) or (d and (b or c)))
5. 虛擬貨幣演算法有哪些
Litecoin
Litecoin(LTC)發布於2011年10月7日,是目前市值最高的山寨幣,約為 BTC 市值的2%。目前單價為2.31美元,總幣值 3800 萬美元。
這同樣是一種分布式(去中心化)的數字貨幣。不同於比特幣使用的 SHA256 挖礦演算法,LTC 採用 scrypt 演算法。獨特的演算法也是從山寨幣中脫穎而出的關鍵,scrypt 演算法使用 SHA256 作為其子程序,而 scrypt 自身需要大量的內存,每個散列作為輸入的種子使用的,然後與需要大量的內存存儲另一種子偽隨機序列,共同生成序列的偽隨機點而輸出哈希值。在 BTC(Bitcoin)的開采依靠單純的顯卡挖礦已經力不從心(利用一般配置顯卡挖到一個 BTC 大概需要十幾到數十天),各種價格不菲挖礦機的出現提高了普通人通過挖礦獲得 BTC 的門檻,而 LTC 在使用 PC 顯卡挖礦上具有一定優勢。(本段來源於知乎。)
Litecoin 對比 BTC 在技術上做了一點的改進,如果現在 BTC 是金,那 LTC 暫時是銀。
Litecoin 的最大優點是能更快確認真偽,該虛擬貨幣由 Charles Lee 設計和維護。比特幣的交易需要驗證,驗證的時間平均在10分鍾以上,大多數交易網站驗證需要1個小時。Litecoin 交易確認平均為2.5分鍾,開發者聲稱縮短驗證增加了虛擬貨幣的實用性。定製機器和 AMD GPU 的比特幣采礦效率最高,令使用 CPU 采礦的礦工幾乎無利可圖。Litecoin 的采礦排除了 GPU 和定製處理器,因此不過於依賴少量專業礦工。
PPCoin
PPCoin(PPC) 發布於2012年8月19,在 BTC 原有技術上有所提升。使用 proof-of-stake,並加入 coin age 概念。
PPCoin 是 Bitcoin 的分叉項目,目標是實現能源效率,並盡可能保持原 Bitcoin 的最好性能。PPCoin 單價0.22美元,總幣值 400 萬美元。
PPCoin 沒有一個固定的貨幣供應量上限,但這並不意味著 PPCoin 比 Bitcoin 有明顯通脹。可以將 Bitcoin 比做黃金,黃金每年的通脹是1-3%左右,雖然黃金並沒有已知的貨幣供應量上限,但我們仍知道它是可靠的稀缺品。
PPCoin 的鑄造有兩種類型,工作證明及股權證明。工作證明的鑄幣率受摩爾定律影響,這取決於我們的工作證明能力的成倍增長。而大家都知道的是摩爾定律最終會結束,到那時通脹的 PPCoin 可能已經接近黃金的水平。而股權證明鑄造每年最多通脹 1%。與此同時,PPCoin 的交易費用被銷毀以抗衡通脹。所以整體來說, PPCoin 的鑄幣設計仍是未來一個非常低的通脹設計,可以達到和 Bitcoin 相媲美的程度。
PPCoin 的獎勵方式類似彩票,會根據礦工持有的 PPCoin 數量決定獲勝幾率,創始人之一的 Sunny King 說,他們的設計是基於長期能量效率的新概念。
Terracoin
Terracoin(TRC)發布於2012年10月26,總幣量 4200 萬。每塊速度為2分鍾,比 LTC 稍快一些。技術上沒有太多特別之處,類似 BTC 每4年產量減半。
不過運營團隊似乎有較強商業背景,可能會在流通上優於其他比特幣。虛擬貨幣現在的發展越來越得到重視,現在一些有商業背景的團隊進入,會加速虛擬貨幣的發展。
Namecoin
Namecoin 是一個基於比特幣技術的分布式域名系統,其原理和 Bitcoin 一樣, 這個開源軟體首次發布的日期是2011年4月18日。
Namecoin 產生於一個不同於 Bitcoin 主交易區塊的起源塊, 使用一個新的區塊鏈(blockchain),獨立於 Bitcoin 的區塊鏈之外,因為是基於 Bitcoin,域名的安全性, 分布性, 魯棒性, 加密性, 遷移都有數學保證。可以用挖 Bitcoin 的方式,同時挖 Namecoin。
這個項目由 bitdns 討論並提出,主要是對目前 DNS 的缺陷不滿。Namecoin 惟一的頂級域名是 .bit, 注冊 .bit 域名需要花費 Namecoin。
6. SHA256是什麼
SHA-256是比特幣一些列數字貨幣使用的加密演算法。然而,它使用了大量的計算能力和處理時間,迫使礦工組建采礦池以獲取收益。
7. 比特幣 原理 sha256 多少次
比特幣是一個共識網路,促成了一個全新的支付系統和一種完全數字化的貨幣。它是第一個去中心化的對等支付網路,由其用戶自己掌控而無須中央管理機構或中間人。從用戶的角度來看,比特幣很像互聯網的現金。比特幣也可以看作是目前最傑出的三式簿記系統。
任何人均可以在專門的硬體上運行軟體而成為比特幣礦工。挖礦軟體通過P2P網路監聽交易廣播,執行恰當的任務以處理並確認這些交易。比特幣礦工完成這些工作能賺取用戶支付的用於加速交易處理的交易手續費以及按固定公式增發的比特幣。
新的交易需要被包含在一個具有數學工作量證明的區塊中才能被確認。這種證明很難生成因為它只能通過每秒嘗試數十億次的計算來產生。礦工們需要在他們的區塊被接受並拿到獎勵前運行這些計算。隨著更多的人開始挖礦,尋找有效區塊的難度就會由網路自動增加以確保找到區塊的平均時間保持在10分鍾。因此,挖礦的競爭非常激烈,沒有一個個體礦工能夠控制塊鏈里所包含的內容。
工作量證明還被設計成必須依賴以往的區塊,這樣便強制了塊鏈的時間順序。這種設計使得撤銷以往的交易變得極其困難,因為需要重新計算所有後續區塊的工作量證明。當兩個區塊同時被找到,礦工會處理接收到的第一個區塊,一旦找到下一個區塊便將其轉至最長的塊鏈。這樣就確保采礦過程維持一個基於處理能力的全局一致性。
比特幣礦工既不能通過作弊增加自己的報酬,也不能處理那些破壞比特幣網路的欺詐交易,因為所有的比特幣節點都會拒絕含有違反比特幣協議規則的無效數據的區塊。因此,即使不是所有比特幣礦工都可以信任,比特幣網路仍然是安全的。
sha256是一種加密演算法。
8. 除了比特幣(BTC)外,還有哪些虛擬貨幣
1、Q幣
Q幣,簡稱QB ,也稱QQ幣、騰訊Q幣等。通常它的兌價是1Q幣=1人民幣,用騰訊拍拍網交易一般都是9折。
QB是由騰訊推出的一種虛擬貨幣,可以用來支付QQ的QQ行號碼、QQ會員服務等服務。騰訊Q幣,通過購買QQ卡,電話充值,銀行卡充值,網路充值,手機充值卡,一卡通充值卡等方式獲得。
QQ卡面值分別有10元,15元,30元,60元,100元,200元。
還有一種存在於電子加密貨幣圈中,名稱是QQCoin,兩者沒有關聯。
2、萊特幣
萊特幣(Litecoin),簡寫:LTC,貨幣符號:Ł;是一種基於「點對點」(peer-to-peer)技術的網路貨幣,也是MIT/X11許可下的一個開源軟體項目。它可以幫助用戶即時付款給世界上任何一個人。
萊特幣受到了比特幣(BTC)的啟發,並且在技術上具有相同的實現原理,萊特幣的創造和轉讓基於一種開源的加密協議,不受到任何中央機構的管理。
3、無限幣
無限幣(簡稱IFC)是一個新興數字貨幣,相較於比特幣更具流通優勢,填補了比特幣在商業流通、促進商業運轉等領域的短板。無限幣的定位是服務於日常生活的小額交易支付。
無限幣一次交易需3次確認,每次確認需3秒,交易確認速度非常快。由於比特幣交易共需要6個確認,共需時約1小時,萊特幣交易確認共需時15分鍾,無限幣被用於日常普遍的交易,更貼合實際。
無限幣發布於2013年6月5日。基於Scrypt PoW 演算法。30秒生成一個區塊,最初的區塊每塊中有524288枚無限幣,之後每生成86400個區塊,區塊內的幣數量減半,共計約906億枚。挖礦難度每小時調整一次。
4、誇克幣
誇克幣不是現實生活當中的貨幣,它安全地存在於全球網路的電腦當中。
誇克網路受6種最先進的加密演算法保護從而確保它能夠成為一種數字化分類賬,整個網路通過利用6種功能中的每一個來產生一個工作量證明(proof-of-work),而硬幣製造人必須「驗證」這些交易來確保每一個硬幣的增加都是真實有效的。
只有正規電腦才能參與確保它能夠維持一種高度安全的點對點網路,這使得它更權利分散。
誇克幣只能通過正規電腦的CPU挖取,在前36周中總共有247,605,120的誇克幣會被挖取出來,從2014年3月30號開始每年設置為1050000的誇克幣可以通過「挖掘」的方式流入市場,區塊獎勵永遠不會低於1個,目前是2個。
5、澤塔幣
澤塔幣發布於2013年8月3日,每30秒一個確認,交易確認速度非常快,Zetacoin是基於SHA-256演算法的一個開放源碼的數字貨幣, 最初的硬幣開采為160百萬枚硬幣,100萬金幣其後每年的通貨膨脹,這個小的通貨膨脹是一個更好的激勵,以保持網路的散列不是純粹的交易費用。
Zetacoin的總量1.6億個 ,每塊1000個ZET,每80640塊減半。
9. 比特幣演算法原理
比特幣演算法主要有兩種,分別是橢圓曲線數字簽名演算法和SHA256哈希演算法。
橢圓曲線數字簽名演算法主要運用在比特幣公鑰和私鑰的生成過程中,該演算法是構成比特幣系統的基石。SHA-256哈希演算法主要是運用在比特幣的工作量證明機制中。
比特幣產生的原理是經過復雜的運演算法產生的特解,挖礦就是尋找特解的過程。不過比特幣的總數量只有2100萬個,而且隨著比特幣不斷被挖掘,越往後產生比特幣的難度會增加,可能獲得比特幣的成本要比比特幣本身的價格高。
比特幣的區塊由區塊頭及該區塊所包含的交易列表組成,區塊頭的大小為80位元組,由4位元組的版本號、32位元組的上一個區塊的散列值、32位元組的 Merkle Root Hash、4位元組的時間戳(當前時間)、4位元組的當前難度值、4位元組的隨機數組成。擁有80位元組固定長度的區塊頭,就是用於比特幣工作量證明的輸入字元串。不停的變更區塊頭中的隨機數即 nonce 的數值,並對每次變更後的的區塊頭做雙重 SHA256運算,將結果值與當前網路的目標值做對比,如果小於目標值,則解題成功,工作量證明完成。
比特幣的本質其實是一堆復雜演算法所生成的一組方程組的特解(該解具有唯一性)。比特幣是世界上第一種分布式的虛擬貨幣,其沒有特定的發行中心,比特幣的網路由所有用戶構成,因為沒有中心的存在能夠保證了數據的安全性。