虛擬貨幣sha256
A. 加密演算法 sha256 安全嗎
你說的是sha256簽名演算法吧,安全系數不錯的,都是國際標准加密演算法,現在市場上的很多透明加密軟體都有採用此加密演算法,破壞簽名修改數據就會使加密軟體不能使用,我自己了解的免費加密軟體紅線隱私保護系統就有使用該簽名演算法。
B. SHA256 加密後能不能解密
SHA是散列演算法,不是加密演算法,不存在解密的問題。
原因:
對數據解密破解就是找到任意一個源數據,能夠生成相同的目標數據。
SHA256基本上是不可破解的,即找不到(或概率極小)「碰撞」結果。
網站的解密規則:
網站從瀏覽器發送過來的信息當中選出一組加密演算法與HASH演算法,並將自己的身份信息以證書的形式發回給瀏覽器。證書裡麵包含了網站地址,加密公鑰,以及證書的頒發機構等信息。
(2)虛擬貨幣sha256擴展閱讀:
加密解密過程中,瀏覽器對網站的驗證:
1、驗證證書的合法性(頒發證書的機構是否合法,證書中包含的網站地址是否與正在訪問的地址一致等),如果證書受信任,則瀏覽器欄裡面會顯示一個小鎖頭,否則會給出證書不受信的提示。
2、如果證書受信任,或者是用戶接受了不受信的證書,瀏覽器會生成一串隨機數的密碼,並用證書中提供的公鑰加密。
3、使用約定好的HASH演算法計算握手消息,並使用生成的隨機數對消息進行加密,最後將之前生成的所有信息發送給網站。
C. sha256 與 sha256sum 一樣么
sha256sum 就是linux上計算sha256值的一個程序。通過sha256sum 可以算出目標的sha256值。
D. 比特幣 原理 sha256 多少次
比特幣是一個共識網路,促成了一個全新的支付系統和一種完全數字化的貨幣。它是第一個去中心化的對等支付網路,由其用戶自己掌控而無須中央管理機構或中間人。從用戶的角度來看,比特幣很像互聯網的現金。比特幣也可以看作是目前最傑出的三式簿記系統。
任何人均可以在專門的硬體上運行軟體而成為比特幣礦工。挖礦軟體通過P2P網路監聽交易廣播,執行恰當的任務以處理並確認這些交易。比特幣礦工完成這些工作能賺取用戶支付的用於加速交易處理的交易手續費以及按固定公式增發的比特幣。
新的交易需要被包含在一個具有數學工作量證明的區塊中才能被確認。這種證明很難生成因為它只能通過每秒嘗試數十億次的計算來產生。礦工們需要在他們的區塊被接受並拿到獎勵前運行這些計算。隨著更多的人開始挖礦,尋找有效區塊的難度就會由網路自動增加以確保找到區塊的平均時間保持在10分鍾。因此,挖礦的競爭非常激烈,沒有一個個體礦工能夠控制塊鏈里所包含的內容。
工作量證明還被設計成必須依賴以往的區塊,這樣便強制了塊鏈的時間順序。這種設計使得撤銷以往的交易變得極其困難,因為需要重新計算所有後續區塊的工作量證明。當兩個區塊同時被找到,礦工會處理接收到的第一個區塊,一旦找到下一個區塊便將其轉至最長的塊鏈。這樣就確保采礦過程維持一個基於處理能力的全局一致性。
比特幣礦工既不能通過作弊增加自己的報酬,也不能處理那些破壞比特幣網路的欺詐交易,因為所有的比特幣節點都會拒絕含有違反比特幣協議規則的無效數據的區塊。因此,即使不是所有比特幣礦工都可以信任,比特幣網路仍然是安全的。
sha256是一種加密演算法。
E. SHA256和Crypto兩種加密演算法的區別正確的說法是
sha256是簽名演算法,最後的結果是無法得到輸入的明文的。crypto在很多語言是一個包,裡面有多種的加密演算法可以選擇,他包含加密,簽名等等的演算法。加密演算法和簽名的最大區別就是加密演算法的結果通過解密可以獲得明文。
F. SHA256是什麼
SHA-256是比特幣一些列數字貨幣使用的加密演算法。然而,它使用了大量的計算能力和處理時間,迫使礦工組建采礦池以獲取收益。
G. 虛擬貨幣的常見種類
虛擬貨幣是指非真實的貨幣。知名的虛擬貨幣如網路公司的網路幣、騰訊公司的Q幣,Q點、盛大公司的點券;2013年流行的數字貨幣有,比特幣、萊特幣、福源幣、狗狗幣等等。
網路虛擬貨幣大致可以分為
第一類是大家熟悉的游戲幣。在單機游戲時代,主角靠打倒敵人、進賭館贏錢等方式積累貨幣,用這些購買草葯和裝備,但只能在自己的游戲機里使用。那時,玩家之間沒有「市場」。自從互聯網建立起門戶和社區、實現游戲聯網以來,虛擬貨幣便有了「金融市場」,玩家之間可以交易游戲幣。
第二類是門戶網站或者即時通訊工具服務商發行的專用貨幣,用於購買本網站內的服務。使用最廣泛的當屬騰訊公司的Q 幣,可用來購買會員資格、QQ秀等增值服務。
第三類互聯網上的虛擬貨幣,如比特幣(BTC)、福源幣(FTC)、萊特貨幣(LTC)等,比特幣是一種由開源的P2P軟體產生的電子貨幣,也有人將比特幣意譯為「比特金」,是一種網路虛擬貨幣。主要用於互聯網金融投資,也可以作為新式貨幣直接用於生活中使用。
H. hmac sha256和sha256的區別
兩者是一樣的。hmac是Hash-based Message Authentication Code的簡寫,就是指哈希消息認證碼,包含有很多種哈希加密演算法,sha256是其中一種。
探究的一般過程是從發現問題、提出問題開始的,發現問題後,根據自己已有的知識和生活經驗對問題的答案作出假設.設計探究的方案,包括選擇材料、設計方法步驟等.按照探究方案進行探究,得到結果,再分析所得的結果與假設是否相符,從而得出結論.並不是所有的問題都一次探究得到正確的結論.有時,由於探究的方法不夠完善,也可能得出錯誤的結論.因此,在得出結論後,還需要對整個探究過程進行反思.探究實驗的一般方法步驟:提出問題、做出假設、制定計劃、實施計劃、得出結論、表達和交流.
科學探究常用的方法有觀察法、實驗法、調查法和資料分析法等.
觀察是科學探究的一種基本方法.科學觀察可以直接用肉眼,也可以藉助放大鏡、顯微鏡等儀器,或利用照相機、錄像機、攝像機等工具,有時還需要測量.科學的觀察要有明確的目的;觀察時要全面、細致、實事求是,並及時記錄下來;要有計劃、要耐心;要積極思考,及時記錄;要交流看法、進行討論.實驗方案的設計要緊緊圍繞提出的問題和假設來進行.在研究一種條件對研究對象的影響時,所進行的除了這種條件不同外,其它條件都相同的實驗,叫做對照實驗.一般步驟:發現並提出問題;收集與問題相關的信息;作出假設;設計實驗方案;實施實驗並記錄;分析實驗現象;得出結論.調查是科學探究的常用方法之一.調查時首先要明確調查目的和調查對象,制訂合理的調查方案.調查過程中有時因為調查的范圍很大,就要選取一部分調查對象作為樣本.調查過程中要如實記錄.對調查的結果要進行整理和分析,有時要用數學方法進行統計.收集和分析資料也是科學探究的常用方法之一.收集資料的途徑有多種.去圖書管查閱書刊報紙,拜訪有關人士,上網收索.其中資料的形式包括文字、圖片、數據以及音像資料等.對獲得的資料要進行整理和分析,從中尋找答案和探究線索
I. 什麼是SHA256
SHA 家族
SHA (Secure Hash Algorithm,譯作安全散列演算法) 是美國國家安全局 (NSA) 設計,美國國家標准與技術研究院 (NIST) 發布的一系列密碼散列函數。正式名稱為 SHA 的家族第一個成員發布於 1993年。然而現在的人們給它取了一個非正式的名稱 SHA-0 以避免與它的後繼者混淆。兩年之後, SHA-1,第一個 SHA 的後繼者發布了。 另外還有四種變體,曾經發布以提升輸出的范圍和變更一些細微設計: SHA-224, SHA-256, SHA-384 和 SHA-512 (這些有時候也被稱做 SHA-2)。
SHA-0 和 SHA-1
最初載明的演算法於 1993年發布,稱做安全散列標准 (Secure Hash Standard),FIPS PUB 180。這個版本現在常被稱為 "SHA-0"。它在發布之後很快就被 NSA 撤回,並且以 1995年發布的修訂版本 FIPS PUB 180-1 (通常稱為 "SHA-1") 取代。根據 NSA 的說法,它修正了一個在原始演算法中會降低密碼安全性的錯誤。然而 NSA 並沒有提供任何進一步的解釋或證明該錯誤已被修正。1998年,在一次對 SHA-0 的攻擊中發現這次攻擊並不能適用於 SHA-1 — 我們不知道這是否就是 NSA 所發現的錯誤,但這或許暗示我們這次修正已經提升了安全性。SHA-1 已經被公眾密碼社群做了非常嚴密的檢驗而還沒發現到有不安全的地方,它現在被認為是安全的。
SHA-0 和 SHA-1 會從一個最大 2^64 位元的訊息中產生一串 160 位元的摘要然後以設計 MD4 及 MD5 訊息摘要演算法的 MIT 教授 Ronald L. Rivest 類似的原理為基礎來加密。
SHA-0 的密碼分析
在 CRYPTO 98 上,兩位法國研究者展示了一次對 SHA-0 的攻擊 (Chabaud and Joux, 1998): 散列碰撞可以復雜到 2^61 時被發現;小於 2^80 是理想的相同大小散列函數。
2004年時,Biham 和 Chen 發現了 SHA-0 的近似碰撞 — 兩個訊息可以散列出相同的數值;在這種情況之下,142 和 160 位元是一樣的。他們也發現了 SHA-0 在 80 次之後減少到 62 位元的完整碰撞。
2004年8月12日,Joux, Carribault, Lemuet 和 Jalby 宣布了完整 SHA-0 演算法的散列碰撞。這是歸納 Chabaud 和 Joux 的攻擊所完成的結果。發現這個碰撞要復雜到 2^51, 並且用一台有 256 顆 Itanium2 處理器的超級電腦耗時大約 80,000 CPU 工作時 。
2004年8月17日,在 CRYPTO 2004 的 Rump 會議上,Wang, Feng, Lai, 和 Yu 宣布了攻擊 MD5、SHA-0 和其他散列函數的初步結果。他們對 SHA-0 攻擊復雜到 2^40,這意味著他們攻擊的成果比 Joux 還有其他人所做的更好。該次 Rump 會議的簡短摘要可以在 這里找到,而他們在 sci.crypt 的討論,例如: 這些結果建議計劃使用 SHA-1 作為新的密碼系統的人需要重新考慮。
更長的變種
NIST 發布了三個額外的 SHA 變體,每個都有更長的訊息摘要。以它們的摘要長度 (以位元計算) 加在原名後面來命名:"SHA-256", "SHA-384" 和 "SHA-512"。它們發布於 2001年的 FIPS PUB 180-2 草稿中,隨即通過審查和評論。包含 SHA-1 的 FIPS PUB 180-2,於 2002年以官方標准發布。這些新的散列函數並沒有接受像 SHA-1 一樣的公眾密碼社群做詳細的檢驗,所以它們的密碼安全性還不被大家廣泛的信任。2004年2月,發布了一次 FIPS PUB 180-2 的變更通知,加入了一個額外的變種 "SHA-224",定義了符合雙金鑰 3DES 所需的金鑰長度。
Gilbert 和 Handschuh (2003) 研究了新的變種並且沒有發現弱點。
SHAd
SHAd 函數是一個簡單的相同 SHA 函數的重述:
SHAd-256(m)=SHA-256(SHA-256(m))。它會克服有關延伸長度攻擊的問題。
應用
SHA-1, SHA-224, SHA-256, SHA-384 和 SHA-512 都被需要安全散列演算法的美國聯邦政府所應用,他們也使用其他的密碼演算法和協定來保護敏感的未保密資料。FIPS PUB 180-1 也鼓勵私人或商業組織使用 SHA-1 加密。Fritz-chip 將很可能使用 SHA-1 散列函數來實現個人電腦上的數位版權管理。
首先推動安全散列演算法出版的是已合並的數位簽章標准。
SHA 散列函數已被做為 SHACAL 分組密碼演算法的基礎。
SHA-1 的描述
以下是 SHA-1 演算法的偽代碼:
(Initialize variables:)
a = h0 = 0x67452301
b = h1 = 0xEFCDAB89
c = h2 = 0x98BADCFE
d = h3 = 0x10325476
e = h4 = 0xC3D2E1F0
(Pre-processing:)
paddedmessage = (message) append 1
while length(paddedmessage) mod 512 > 448:
paddedmessage = paddedmessage append 0
paddedmessage = paddedmessage append (length(message) in 64-bit format)
(Process the message in successive 512-bit chunks:)
while 512-bit chunk(s) remain(s):
break the current chunk into sixteen 32-bit words w(i), 0 <= i <= 15
(Extend the sixteen 32-bit words into eighty 32-bit words:)
for i from 16 to 79:
w(i) = (w(i-3) xor w(i-8) xor w(i-14) xor w(i-16)) leftrotate 1
(Main loop:)
for i from 0 to 79:
temp = (a leftrotate 5) + f(b,c,d) + e + k + w(i) (note: all addition is mod 2^32)
where:
(0 <= i <= 19): f(b,c,d) = (b and c) or ((not b) and d), k = 0x5A827999
(20 <= i <= 39): f(b,c,d) = (b xor c xor d), k = 0x6ED9EBA1
(40 <= i <= 59): f(b,c,d) = (b and c) or (b and d) or (c and d), k = 0x8F1BBCDC
(60 <= i <= 79): f(b,c,d) = (b xor c xor d), k = 0xCA62C1D6
e = d
d = c
c = b leftrotate 30
b = a
a = temp
h0 = h0 + a
h1 = h1 + b
h2 = h2 + c
h3 = h3 + d
h4 = h4 + e
digest = hash = h0 append h1 append h2 append h3 append h4
注意:FIPS PUB 180-1 展示的構想,用以下的公式替代可以增進效能:
(0 <= i <= 19): f(b,c,d) = (d xor (b and (c xor d)))
(40 <= i <= 59): f(b,c,d) = (b and c) or (d and (b or c)))
J. sha256加密演算法的證書怎麼解密
1.瀏覽器將自己支持的一套加密規則發送給網站。
2.網站從中選出一組加密演算法與HASH演算法,並將自己的身份信息以證書的形式發回給瀏覽器。證書裡麵包含了網站地址,加密公鑰,以及證書的頒發機構等信息。
3.瀏覽器獲得網站證書之後瀏覽器要做以下工作:
a) 驗證證書的合法性(頒發證書的機構是否合法,證書中包含的網站地址是否與正在訪問的地址一致等),如果證書受信任,則瀏覽器欄裡面會顯示一個小鎖頭,否則會給出證書不受信的提示。
b) 如果證書受信任,或者是用戶接受了不受信的證書,瀏覽器會生成一串隨機數的密碼,並用證書中提供的公鑰加密。
c) 使用約定好的HASH演算法計算握手消息,並使用生成的隨機數對消息進行加密,最後將之前生成的所有信息發送給網站。
4.網站接收瀏覽器發來的數據之後要做以下的操作:
a) 使用自己的私鑰將信息解密取出密碼,使用密碼解密瀏覽器發來的握手消息,並驗證HASH是否與瀏覽器發來的一致。
b) 使用密碼加密一段握手消息,發送給瀏覽器。
5.瀏覽器解密並計算握手消息的HASH,如果與服務端發來的HASH一致,此時握手過程結束,之後所有的通信數據將由之前瀏覽器生成的隨機密碼並利用對稱加密演算法進行加密。